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Objects of study

Fix a manifold M, space X .

Definition

C̃n(M,X ) := Emb(n,M)× X n ordered configuration space

Cn(M,X ) := C̃n(M,X )/Σn unordered configuration space

C +
n (M,X ) := C̃n(M,X )/An oriented configuration space

Abbreviate to Cn(M) and C +
n (M) since we will keep X fixed throughout.
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Stabilisation maps

Cn(M)
s−→ Cn+1(M)

• assume M = interior of manifold-with-boundary M̄

• choose boundary-component of M̄: ∂0M̄

• s : push configuration away from ∂0M̄ slightly, add a new point b0 in the
newly-vacated neighbourhood of ∂0M̄ to the configuration.

• label it with x0 ∈ X

Oriented case: C +
n (M) −→ C +

n+1(M)

2 possible conventions for induced orientations; say

+s : [ p1 ··· pn
x1 ··· xn

] 7→
[

p′1 ··· p′n b0
x1 ··· xn x0

]
−s : [ p1 ··· pn

x1 ··· xn
] 7→

[
p′1 ··· p′n−1 b0 p′n
x1 ··· xn−1 x0 xn

]
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Homological stability

Question

For each degree ∗, is H∗Cn(M) eventually independent of n as n→∞?

• Quantitative version: give an explicit bound b(∗) so that

H∗Cn(M) ∼= H∗Cn+1(M)

as soon as n ≥ b(∗).

• Rewrite this in terms of n: we want a function k(n) so that

H∗Cn(M) ∼= H∗Cn+1(M)

for all ∗ ≤ k(n), and we want k(n)→∞ as n→∞.

• In our case k will always be linear, and we can talk about the slope of the
stability range.
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Brief history

manifold M space X slope
Randal-Williams 10/11 [∗] path-conn. 1/2

Nakaoka 60 R∞ pt 1/2 BΣn

Segal 73, McDuff 75 Rd , M pt — includes Bβn

Segal 79 M pt 1/2

Lehrer–Segal 01 Rd X — with Q-coefficients
Church 11 [∗∗] pt 1 with Q-coefficients

[∗] connected, dimenstion ≥ 2, interior of a manifold-with-boundary

[∗∗] connected, orientable, (finite-type)
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Brief history

Answering the same question for H∗C
+
n (M):

manifold M space X slope
Hausmann 78 R∞ pt 1/3 BAn

1/2 with Z[ 1
3 ]-coefficients

Guest et al. 96 [∗] pt 1/3 includes BAβn
1/2 with Z[ 1

3 ]-coefficients

[∗] Riemann surface minus a non-empty finite set of points

NB: These proofs both involve calculations very specific to their respective situations, so
do not generalise naturally.
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Main theorem

In this talk we will outline the proof of homological stability for C +
n (M,X ), with:

• M the interior of a manifold-with-boundary,

• X path-connected,

• and with a stability slope of 1/3.

Corollaries:

M = R∞ and X = pt  An

M = R2 and X = pt  Aβn

More generally, taking M = S = interior of a compact connected surface with
boundary and X = pt gives H.S. for AβS

n .

Taking X = BG , we get H.S. for AβS
n o G .
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Main theorem

We will start by outlining the proof of the unordered version of this theorem:

Theorem (Randal-Williams)

Cn(M)
s−→ Cn+1(M) is

• an isomorphism on H∗ for ∗ ≤ n/2− 1

• a surjection on H∗ for ∗ ≤ n/2.

This can be rephrased as

H∗Rn(M) = 0 for ∗ ≤ n/2

where Rn(M) is the mapping cone (homotopy cofibre) of Cn(M)
s−→ Cn+1(M).
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Outline of proof: 1

Strategy — construct a map with target Rn(M), and prove it is

1 surjective on H∗ for ∗ ≤ n/2

2 zero on H∗ for ∗ ≤ n/2.

Cn−1(M) Cn(M)

Cn(M) Cn+1(M)

Rn−1(M) Rn(M)

s

s

s s

1 or (12)

s̃1 or s̃(12)

id

s̃1s̃1 ' ∗
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Outline of proof: 2: surjectivity on H∗

Factorise s into

Cn−1(M) Cn−1(M \ pt) Cn(M)
p f

p — push configuration away from ∂0M̄, remove b0 from M.

f — fill in the missing point in the manifold, add this new point to the configuration.

Rn−1(M) Rn(M \ pt) Rn(M)

Cn(M) Cn(M \ pt) Cn+1(M)

Cn−1(M) Cn−1(M \ pt) Cn(M)
p f

p f

s

(12)

p̃

=

f̃

This is a factorisation of s̃(12).
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Outline of proof: 2: surjectivity on H∗

We can show that p̃ and f̃ are surjective on H∗ for ∗ ≤ n/2:

p̃: The map Cn−1(M \ pt)
u−→ Cn−1(M) is a one-sided inverse for p (up to ').

It commutes with s so the induced ũ is a one-sided homotopy-inverse for p̃.

Using excision, can identify its homotopy cofibre (up to H∗-isom.) with that of
the dim(M)-fold suspension of

Cn−2(M \ pt)
s−→ Cn−1(M \ pt)

f̃ : Involved spectral sequence argument, which I won’t go into now...

Deferred to the end, if time.
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It commutes with s so the induced ũ is a one-sided homotopy-inverse for p̃.

Using excision, can identify its homotopy cofibre (up to H∗-isom.) with that of
the dim(M)-fold suspension of

Cn−2(M \ pt)
s−→ Cn−1(M \ pt)

f̃ : Involved spectral sequence argument, which I won’t go into now...

Deferred to the end, if time.

Martin Palmer (Oxford) H.S. for oriented configuration spaces 11 / 19



Outline of proof: 2: surjectivity on H∗

We can show that p̃ and f̃ are surjective on H∗ for ∗ ≤ n/2:

p̃: The map Cn−1(M \ pt)
u−→ Cn−1(M) is a one-sided inverse for p (up to ').
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Deferred to the end, if time.
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Outline of proof: 3

So we have

• s̃12 surjective on H∗ for ∗ ≤ n/2

• s̃1 zero on H∗ (∀∗).

‘Ladder trick’:

The maps of cofibrations

Cn−1(M) Cn(M) Rn−1(M)

Cn(M) Cn+1(M) Rn(M)

s

s

s s s̃11

Cn−1(M) Cn(M) Rn−1(M)

Cn(M) Cn+1(M) Rn(M)

s

s

s s s̃(12)(12)and

each induce an exact ladder on homology:

H∗Cn(M) H∗Rn−1(M) H∗−1Cn−1(M) H∗−1Cn(M)

H∗Cn+1(M) H∗Rn(M) H∗−1Cn(M) H∗−1Cn+1(M)

s∗

s̃1∗ or s̃(12)∗

0
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Main theorem – the oriented version

Now we will turn to the oriented version of the theorem:

Theorem (P.)

C +
n (M)

s−→ C +
n+1(M) is

• an isomorphism on H∗ for ∗ ≤ (n−2)/3− 1

• a surjection on H∗ for ∗ ≤ (n−2)/3.

This can be rephrased as

H∗R
+
n (M) = 0 for ∗ ≤ (n−2)/3

where R+
n (M) is the mapping cone (homotopy cofibre) of C +

n (M)
s−→ C +

n+1(M).
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Outline of proof: 4: the oriented version

Note: We defined s : [ p1 ··· pn
x1 ··· xn

] 7→
[

p′1 ··· p′n b0
x1 ··· xn x0

]
.

So in order for f and s to commute, we need to define

f : [ p1 ··· pn
x1 ··· xn

] 7→ [ ∗ p1 ··· pn
x0 x1 ··· xn

]

(∗ = the missing point in M \ pt).

Upshot: the composition

C +
n−1(M) C +

n−1(M \ pt) C +
n (M)

p f

is a factorisation of (−1)n−1s .

Martin Palmer (Oxford) H.S. for oriented configuration spaces 14 / 19



Outline of proof: 4: the oriented version

Note: We defined s : [ p1 ··· pn
x1 ··· xn

] 7→
[

p′1 ··· p′n b0
x1 ··· xn x0

]
.

So in order for f and s to commute, we need to define

f : [ p1 ··· pn
x1 ··· xn

] 7→ [ ∗ p1 ··· pn
x0 x1 ··· xn

]

(∗ = the missing point in M \ pt).

Upshot: the composition

C +
n−1(M) C +

n−1(M \ pt) C +
n (M)

p f

is a factorisation of (−1)n−1s .

Martin Palmer (Oxford) H.S. for oriented configuration spaces 14 / 19



Outline of proof: 4: the oriented version

Note: We defined s : [ p1 ··· pn
x1 ··· xn

] 7→
[

p′1 ··· p′n b0
x1 ··· xn x0

]
.

So in order for f and s to commute, we need to define

f : [ p1 ··· pn
x1 ··· xn

] 7→ [ ∗ p1 ··· pn
x0 x1 ··· xn

]

(∗ = the missing point in M \ pt).

Upshot: the composition

C +
n−1(M) C +

n−1(M \ pt) C +
n (M)

p f

is a factorisation of (−1)n−1s .

Martin Palmer (Oxford) H.S. for oriented configuration spaces 14 / 19



Outline of proof: 4: the oriented version

Now f and s commute exactly, and p and s commute up to the (12)-homotopy as
before, so we get induced maps f̃ , p̃ on mapping cones, which factorise s̃(12):

R+
n−1(M) R+

n (M)

C +
n (M) C +

n+1(M)

C +
n−1(M) C +

n (M)

s̃(12)

(−1)ns

(−1)n−1s

s s(12)

• p̃ and f̃ are surjective on H∗ for ∗ ≤ (n−2)/3.

Problems:

1 The homotopy (12) does not split, so s̃(12) is not zero on H∗.

2 The ‘ladder trick’ depends on knowing (in advance) that s induces injections
on H∗ (∀∗). In the oriented case this is false.
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Solution to 1

Solution to (1) – Extend ‘further back’ to R+
n−2(M):

R+
n−2(M) R+

n (M)

C +
n−1(M) C +

n+1(M)

C +
n−2(M) C +

n (M)

−s2

−s2

s s

s̃H

H

• 3 possible self-homotopies of −s3: 1, (123), (132).

• Factorise −s2 into f ◦ p ◦ f ◦ p  factorise s̃(132) into f̃ ◦ p̃ ◦ f̃ ◦ p̃.

• Show that each f̃ , p̃ is surjective on H∗ for ∗ ≤ (n−2)/3. This is where the 1/3

stability slope becomes necessary.

• The other two homotopies, (123) and 1, split, so we have...
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Solution to 2

• s̃(132) is surjective on H∗ for ∗ ≤ (n−2)/3,

• s̃(123) and s̃1 are zero on H∗ (∀∗).

This time we can’t use the ‘ladder trick’ to combine these facts to finish the
inductive step; instead:

Lemma

The existence of a split homotopy (e.g. s̃(123) or s̃1) filling the square implies that
any homotopy (e.g. s̃(132)) filling the square factorises as below.

Also, this
factorisation is natural w.r.t. stabilisation maps ±s.

R+
n−2(M) ΣC +

n−2(M) C +
n+1(M) R+

n (M)

R+
n−3(M) ΣC +

n−3(M) C +
n (M) R+

n−1(M)

Σ(−s) s	
0 on H∗
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Appendix

Sketch of the spectral sequence argument deferred earlier.

We wanted to show that the
map f̃ is surjective on H∗ up to degree n/2 — do this by splitting it into ã ◦ j̃ :

• On H∗, j̃ can be identified with (for a certain spectral sequence) the edge
homomorphism on the vertical axis E 2

0,∗ � E∞0,∗ (which is always surjective),
followed by the sequence of extensions taking E∞0,∗ to the degree-∗ part of the
limit.By the ind. hyp., the E 2-page looks like

0

• On H∗, ã is (for a different spectral sequence) the d1-differentials in the leftmost
column.This spectral sequence ⇒ 0 in the range of interest, and by the ind. hyp.,
the E 1-page looks like

0
−1
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