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Objects of study

Fix a manifold M, space X.

Definition

Co(M, X) := Emb(n, M) x X" ordered configuration space
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Objects of study

Fix a manifold M, space X.

Definition
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Objects of study

Fix a manifold M, space X.

Definition
Co(M, X) := Emb(n, M) x X" ordered configuration space
Co(M, X) := Co(M, X)/Z, unordered configuration space
CH(M, X) := Co(M, X)/A, oriented configuration space

Abbreviate to C,(M) and C;(M) since we will keep X fixed throughout.
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Stabilisation maps

Ca(M) == Cpia(M)

e assume M = interior of manifold-with-boundary M

choose boundary-component of M: 9yM

s : push configuration away from 80_1\_/7 slightly, add a new point by in the
newly-vacated neighbourhood of JyM to the configuration.

label it with xg € X
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Stabilisation maps

Ca(M) == Cpia(M)

e assume M = interior of manifold-with-boundary M
e choose boundary-component of M: 9yM

e s: push configuration away from 80_1\_/7 slightly, add a new point by in the
newly-vacated neighbourhood of JyM to the configuration.

e label it with xg € X
Oriented case: C (M) — C/ (M)

2 possible conventions for induced orientations; say

S R B

X1 v Xp X0

X1 ot Xn—1 X0 Xp

/ ’ /
. [PL " Pn Pyt Pa_1 bo p
—S: Xi o Xn] — |: 1 n—1 n:|
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Homological stability

For each degree %, is H,C,(M) eventually independent of n as n — co?
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Homological stability

For each degree %, is H,C,(M) eventually independent of n as n — co?

e Quantitative version: give an explicit bound b(x) so that
H.C,(M) =2 H.Cop1(M)

as soon as n > b(x).
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Homological stability

For each degree %, is H,C,(M) eventually independent of n as n — co?

e Quantitative version: give an explicit bound b(x) so that
H.C,(M) =2 H.Cop1(M)

as soon as n > b(x).

e Rewrite this in terms of n: we want a function k(n) so that
H.C,(M) =2 H.Cop1(M)

for all * < k(n), and we want k(n) — oo as n — oo.
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Homological stability

For each degree %, is H,C,(M) eventually independent of n as n — co?

e Quantitative version: give an explicit bound b(x) so that
H.C,(M) =2 H.Cop1(M)

as soon as n > b(x).

e Rewrite this in terms of n: we want a function k(n) so that
H.C,(M) =2 H.Cop1(M)

for all * < k(n), and we want k(n) — oo as n — oo.

e In our case k will always be linear, and we can talk about the slope of the
stability range.
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manifold M space X  slope
Randal-Williams 10/11 [%] path-conn.  1/2

[#*] connected, dimenstion > 2, interior of a manifold-with-boundary
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manifold M space X  slope
Randal-Williams 10/11 [%] path-conn.  1/2
Nakaoka 60 R° pt 1  BY,

[#*] connected, dimenstion > 2, interior of a manifold-with-boundary
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manifold M space X  slope

Randal-Williams 10/11 [%] path-conn.  1/2
Nakaoka 60 R° pt 1  BY,
Segal 73, McDuff 75 RY M pt — includes Bj,

[#*] connected, dimenstion > 2, interior of a manifold-with-boundary
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manifold M space X  slope

Randal-Williams 10/11 [%] path-conn.  1/2
Nakaoka 60 R° pt 1  BY,
Segal 73, McDuff 75 RY M pt — includes Bj,
Segal 79 M pt 1/

[#*] connected, dimenstion > 2, interior of a manifold-with-boundary
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Randal-Williams 10/11
Nakaoka 60

Segal 73, McDuff 75
Segal 79

Lehrer—Segal 01

manifold M

[+]
R>®
RY M
M
Rd

space X
path-conn.
pt
pt
pt
X

slope

1/
12

1/2

By,
includes B,

with Q-coefficients

[#*] connected, dimenstion > 2, interior of a manifold-with-boundary

Martin Palmer (Oxford)

H.S. for oriented configuration spaces



manifold M space X slope

Randal-Williams 10/11 [%] path-conn.  1/2
Nakaoka 60 R pt 1  BY,
Segal 73, McDuff 75 RY M pt — includes Bj,
Segal 79 M pt 1/
Lehrer-Segal 01 RY X —  with Q-coefficients
Church 11 [#%] pt 1 with Q-coefficients

[#*] connected, dimenstion > 2, interior of a manifold-with-boundary
[#x] connected, orientable, (finite-type)
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Answering the same question for H,.C, (M):

manifold M space X slope
Hausmann 78 R° pt /3 BA,
Y2 with Z[}]-coefficients
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Answering the same question for H,.C, (M):

manifold M space X slope

Hausmann 78 R° pt /3 BA,
Y2 with Z[}]-coefficients
Guest et al. 96 [#] pt /3 includes BAQ,

Y2 with Z[}]-coefficients

[*] Riemann surface minus a non-empty finite set of points
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Answering the same question for H,.C, (M):

manifold M space X slope

Hausmann 78 R pt /3 BA,
Y2 with Z[}]-coefficients
Guest et al. 96 [#] pt /3 includes BAQ,

Y2 with Z[}]-coefficients

[*] Riemann surface minus a non-empty finite set of points

NB: These proofs both involve calculations very specific to their respective situations, so
do not generalise naturally.
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In this talk we will outline the proof of homological stability for C;7 (M., X), with:

e M the interior of a manifold-with-boundary,
e X path-connected,
e and with a stability slope of 1/3.
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In this talk we will outline the proof of homological stability for C;7 (M., X), with:

e M the interior of a manifold-with-boundary,
e X path-connected,
e and with a stability slope of 1/3.

Corollaries:

M=R*and X =pt ~ A,
M=TR?and X =pt ~ Aj,
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In this talk we will outline the proof of homological stability for C;7 (M., X), with:

e M the interior of a manifold-with-boundary,
e X path-connected,
e and with a stability slope of 1/3.

Corollaries:

M=R*and X =pt ~ A,
M=R%and X =pt ~ AB,

More generally, taking M = S = interior of a compact connected surface with
boundary and X = pt gives H.S. for Aj:.
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In this talk we will outline the proof of homological stability for C;7 (M., X), with:

e M the interior of a manifold-with-boundary,
e X path-connected,
e and with a stability slope of 1/3.

Corollaries:

M=R*and X =pt ~ A,
M=R?>and X =pt ~ AB,

More generally, taking M = S = interior of a compact connected surface with
boundary and X = pt gives H.S. for Aj:.

Taking X = BG, we get H.S. for A3 G.
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We will start by outlining the proof of the unordered version of this theorem:

Theorem (Randal-Williams)

Co(M) 2 Cpy1(M) is
e an isomorphism on H, for x < nf2 —1
e a surjection on H, for x < nj2.
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We will start by outlining the proof of the unordered version of this theorem:

Theorem (Randal-Williams)

Co(M) 2 Cpy1(M) is
e an isomorphism on H, for x < nf2 —1
e a surjection on H, for x < nj2.

This can be rephrased as
H.R,(M) =0 for x < n/2

where R,(M) is the mapping cone (homotopy cofibre) of C,(M) = C,;1(M).
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Outline of proof: 1

Strategy — construct a map with target R,(M), and prove it is

@ surjective on H, for * < n/2
@ zero on H, for x < n/a.
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Outline of proof: 1

Strategy — construct a map with target R,(M), and prove it is

@ surjective on H, for * < n/2
@ zero on H, for x < n/a.

Rn-1(M) Ra(M)
I
Co(M) Cor1(M)
SI [s
Cr1(M) . Co(M)
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Outline of proof: 1

Strategy — construct a map with target R,(M), and prove it is

@ surjective on H, for * < n/2
@ zero on H, for x < n/a.

Rn—1(M) Ra(M)
I
Co(M) Cr1(M)
s] 1 or (12) [s
Co-1(M) . Co(M)
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Outline of proof: 1

Strategy — construct a map with target R,(M), and prove it is

@ surjective on H, for * < n/2
@ zero on H, for x < n/a.

B (M % or Sz "
]
Ca(M) Cor1(M)
s] 1or (12) [s
Co-1(M) Co(M)
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Outline of proof: 1

Strategy — construct a map with target R,(M), and prove it is

@ surjective on H, for * < n/2
@ zero on H, for x < n/a.

R—1(M) —— R,(M)
I
Co(M) —— Cora(M)
| N
Co1(M) . Ca(M)
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Outline of proof: 1

Strategy — construct a map with target R,(M), and prove it is

@ surjective on H, for * < n/2
@ zero on H, for x < n/a.

Roy(M) —2=" R,(M)
]
Co(M) | Cr1(M)
| ]
Co-1(M) . Ca(M)
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Qutline of proof: 2: surjectivity on H,

Factorise s into

Coa(M) —E— Coa (M pt)

Ca(M)
p — push configuration away from oM, remove by from M.

f — fill in the missing point in the manifold, add this new point to the configuration.

Martin Palmer (Oxford)
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Qutline of proof: 2: surjectivity on H,

Factorise s into

Coa(M) —E— Coa (M pt)

Ca(M)
p — push configuration away from oM, remove by from M.

f — fill in the missing point in the manifold, add this new point to the configuration.

Ro—1(M) R,(M\ pt) R,(M)

T T T

Co(M) Co(M\ pt) —L— Cop1(M)

T T L

Cr-1(M) T’ n—1(M\ pt) Ci(M)
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Qutline of proof: 2: surjectivity on H,

Factorise s into

Coa(M) —E— Coa (M pt)

Ca(M)
p — push configuration away from oM, remove by from M.

f — fill in the missing point in the manifold, add this new point to the configuration.

Ro—1(M) R,(M\ pt) R,(M)

T T T

(M) —2— (M pt) —— Cpia(M)

e o

Cr-1(M) T’ n—1(M\ pt) Ci(M)
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Qutline of proof: 2: surjectivity on H,

Factorise s into

Coa(M) —E— Coa (M pt)

Co(M)
p — push configuration away from oM, remove by from M.
f — fill in the missing point in the manifold, add this new point to the configuration.

Ro—1(M) R,(M\ pt) R,(M)

T T T
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e o
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Qutline of proof: 2: surjectivity on H,

Factorise s into

Coa(M) —E— Coa (M pt)

Co(M)
p — push configuration away from oM, remove by from M.
f — fill in the missing point in the manifold, add this new point to the configuration.

Ro—1(M) R,(M\ pt) R,(M)

T T T

(M) —2— (M pt) —— Cpia(M)

e =

Cr-1(M) T’ n—1(M\ pt) Ci(M)
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Qutline of proof: 2: surjectivity on H,

Factorise s into

Coa(M) —E— Coa (M pt)

Co(M)
p — push configuration away from oM, remove by from M.
f — fill in the missing point in the manifold, add this new point to the configuration.

Ro—1(M) R,(M\ pt) R,(M)

T T T

(M) —2— (M pt) —— Cpia(M)

e =

Cr-1(M) T’ n—1(M\ pt) Ci(M)
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Qutline of proof: 2: surjectivity on H,

Factorise s into

Coa(M) —E— Coa (M pt)

Co(M)
p — push configuration away from oM, remove by from M.
f — fill in the missing point in the manifold, add this new point to the configuration.

Ro—1(M) R,(M\ pt) R,(M)

T T T

(M) —2— (M pt) —— Cpia(M)

e =

Cr-1(M) T’ n—1(M\ pt) Ci(M)

This is a factorisation of 3(12).

Martin Palmer (Oxford)
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Qutline of proof: 2: surjectivity on H,

We can show that p and f are surjective on H, for x < n/2:
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Qutline of proof: 2: surjectivity on H,

We can show that p and f are surjective on H, for x < n/2:
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Qutline of proof: 2: surjectivity on H,

We can show that p and f are surjective on H, for x < n/2:

p: The map C, 1(M\ pt) == C,_1(M) is a one-sided inverse for p (up to ~).
It commutes with s so the induced @ is a one-sided homotopy-inverse for p.
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Qutline of proof: 2: surjectivity on H,

We can show that p and f are surjective on H, for x < n/2:

p: The map C, 1(M\ pt) == C,_1(M) is a one-sided inverse for p (up to ~).
It commutes with s so the induced @ is a one-sided homotopy-inverse for p.

Using excision, can identify its homotopy cofibre (up to H,-isom.) with that of
the dim(M)-fold suspension of

Coa(M\ pt) =5 C,_1(M\ pt)
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Qutline of proof: 2: surjectivity on H,

We can show that p and f are surjective on H, for x < n/2:

p: The map C, 1(M\ pt) == C,_1(M) is a one-sided inverse for p (up to ~).
It commutes with s so the induced @ is a one-sided homotopy-inverse for p.

Using excision, can identify its homotopy cofibre (up to H,-isom.) with that of
the dim(M)-fold suspension of

Coa(M\ pt) =5 C,_1(M\ pt)
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Qutline of proof: 2: surjectivity on H,

We can show that p and f are surjective on H, for x < n/2:

p: The map C, 1(M\ pt) == C,_1(M) is a one-sided inverse for p (up to ~).
It commutes with s so the induced @ is a one-sided homotopy-inverse for p.

Using excision, can identify its homotopy cofibre (up to H,-isom.) with that of
the dim(M)-fold suspension of

Coa(M\ pt) =5 C,_1(M\ pt)

f: Involved spectral sequence argument, which | won't go into now...

Deferred to the end, if time.
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Outline of proof: 3

So we have

e 3 surjective on H, for x < n/2
e 51 zero on H, (Vx).
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Outline of proof: 3

So we have

e 3 surjective on H, for x < n/2
e 51 zero on H, (Vx).

‘Ladder trick':
The maps of cofibrations
Co-1(M) > Co(M) — Ry_1(M) Co-1(M) > Co(M) — Ry_1(M)
s|o1 s s and  s] (12 s | 302
Co(M) - Cria(M) — Ra(M) Co(M) > Cria(M) — Ro(M)

each induce an exact ladder on homology:
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Outline of proof: 3

So we have

e 3 surjective on H, for x < n/2
e 3 zero on H, (Vx).

‘Ladder trick':

The maps of cofibrations

Co1(M) > Co(M) — Ro_1(M) Co1(M) > Co(M) — Ro_1(M)
Sl 1 lS l§1 and Sl (12) lS l§(12)
Co(M) —> Coa(M) — Ra(M) Co(M) —> Coar(M) — Ro(M)

each induce an exact ladder on homology:

> H.Co(M) H,Ro_1(M) He 1Cor(M) — > Ho 1 Co(M) —
314 | OF 5(12)«
s H.Cpia (M) H. Ro(M) H.—1 Co(M) He1Crar (M) —
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Outline of proof: 3

So we have

e 3 surjective on H, for x < n/2
e 3 zero on H, (Vx).

‘Ladder trick':

The maps of cofibrations

Co1(M) > Co(M) — Ro_1(M) Co1(M) > Co(M) — Ro_1(M)
Sl 1 lS l§1 and Sl (12) lS l§(12)
Co(M) —> Coa(M) — Ra(M) Co(M) —> Coar(M) — Ro(M)

each induce an exact ladder on homology:

> H.Co(M) H,Ro_1(M) He 1Cor(M) — > Ho 1 Co(M) —
J 0 51x lor 5(12)«
s H.Cria (M) H. Ro(M) H.—1 Co(M) Hu_1Cpar (M) —
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Main theorem — the oriented version

Now we will turn to the oriented version of the theorem:

Theorem (P.)

Cr(M) = Cr (M) is
e an isomorphism on H, for x < (n=2)/3—1
e a surjection on H, for x < (n=2)/3,
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Main theorem — the oriented version

Now we will turn to the oriented version of the theorem:

Theorem (P.)

Cr(M) = Cr (M) is
e an isomorphism on H, for x < (n=2)/3—1
e a surjection on H, for x < (n=2)/3,

This can be rephrased as
H.RF(M) =0 forx* < (n=2)/3

where R (M) is the mapping cone (homotopy cofibre) of C;/(M) = Cl,;(M).
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Outline of proof: 4: the oriented version

Note: We defined s: [% 1 £] — [P{ Py b0j|_

x|t Xp X0
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Outline of proof: 4: the oriented version

Note: We defined s: [£ 1 2] [p; - bo]

Xy oo X1t Xp X0

So in order for f and s to commute, we need to define
[ R vl IS P

X0 X1 't Xn

(*x = the missing point in M\ pt).
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Outline of proof: 4: the oriented version

Note: We defined s: [f I §"] — [P{ Py boj|_

[ I
So in order for f and s to commute, we need to define

N Rl I IV
(*x = the missing point in M\ pt).

Upshot: the composition

p

G 1 (M) Ca(M\ pt) G (M)

is a factorisation of |(—1)""!s|.

Martin Palmer (Oxford) H.S. for oriented configuration spaces



Outline of proof: 4: the oriented version

Now f and s commute exactly, and p and s commute up to the (12)-homotopy as
before, so we get induced maps f, p on mapping cones, which factorise 3(15):
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Outline of proof: 4: the oriented version

Now f and s commute exactly, and p and s commute up to the (12)-homotopy as
before, so we get induced maps f, p on mapping cones, which factorise 3(15):

REL (M) — 2 R¥(M)
I (_l)ns +I
Cr(M) G (M)
SI (12) Is
+ +
(M) o M)
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Outline of proof: 4: the oriented version

Now f and s commute exactly, and p and s commute up to the (12)-homotopy as
before, so we get induced maps f, p on mapping cones, which factorise 3(15):

REL (M) — 2 R¥(M)
crmy — % e my
SI (12) Is
(M) e G M)

e pand f are surjective on H, for x < (n-2)/3.
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Outline of proof: 4: the oriented version

Now f and s commute exactly, and p and s commute up to the (12)-homotopy as
before, so we get induced maps f, p on mapping cones, which factorise 3(15):

REL (M) — 2 R¥(M)
crmy — % e my
SI (12) Is
(M) e G M)

® 3(12) is surjective on H, for x < (1-2)/3,
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Outline of proof: 4: the oriented version

Now f and s commute exactly, and p and s commute up to the (12)-homotopy as
before, so we get induced maps f, p on mapping cones, which factorise 3(15):

REL (M) — 2 R¥(M)
crmy — % e my
SI (12) Is
(M) e G M)

® 3(12) is surjective on H, for x < (1-2)/3,

Problems:
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Outline of proof: 4: the oriented version

Now f and s commute exactly, and p and s commute up to the (12)-homotopy as
before, so we get induced maps f, p on mapping cones, which factorise 3(15):

REL (M) — 2 R¥(M)
crmy — % e my
SI (12) Is
(M) e G M)

® 3(12) is surjective on H, for x < (1-2)/3,
Problems:

© The homotopy (12) does not split, so 512) is not zero on H,.
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Outline of proof: 4: the oriented version

Now f and s commute exactly, and p and s commute up to the (12)-homotopy as
before, so we get induced maps f, p on mapping cones, which factorise 3(15):

REL (M) — 2 R¥(M)
crmy — % e my
SI (12) Is
(M) e G M)

® 3(12) is surjective on H, for x < (1-2)/3,
Problems:

© The homotopy (12) does not split, so 512) is not zero on H,.

@® The ‘ladder trick’ depends on knowing (in advance) that s induces injections
on H, (Vx). In the oriented case this is false.
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Solution to 1

Solution to (1) — Extend ‘further back’ to R ,(M):
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Solution to 1

Solution to (1) — Extend ‘further back’ to R ,(M):

R (M) > R (M)
T w
CH (M) Clia(M)
ST H Ts
(M) . CH(M)
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Solution to 1

Solution to (1) — Extend ‘further back’ to R ,(M):

R (M) > R (M)
T w
CH (M) Clia(M)
ST H Ts
(M) . CH(M)

e 3 possible self-homotopies of —s3: 1, (123), (132).
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Solution to 1

Solution to (1) — Extend ‘further back’ to R ,(M):

R (M) > R (M)
T w
CH (M) Clia(M)
ST H Ts
(M) . CH(M)

e 3 possible self-homotopies of —s3: 1, (123), (132).
e Factorise —s? into fopofop ~» factorise 5(132) into fopofop.
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Solution to 1

Solution to (1) — Extend ‘further back’ to R ,(M):

R (M) > R (M)
T w
CH (M) iy (M)
ST H Ts
(M) . CH(M)

e 3 possible self-homotopies of —s3: 1, (123), (132).
e Factorise —s? into fopofop ~» factorise §(132) into fopofop.

e Show that each f, p is surjective on H, for * < (n=2)/3. This is where the 1/3
stability slope becomes necessary.

Martin Palmer (Oxford) H.S. for oriented configuration spaces



Solution to 1

Solution to (1) — Extend ‘further back’ to R ,(M):

R (M) > R (M)
T w
CH (M) iy (M)
ST H Ts
(M) — CH(M)

3 possible self-homotopies of —s3: 1, (123), (132).
Factorise —s? into fopofop ~» factorise §(132) into fopofobp.

Show that each 7, p is surjective on H, for x < ( —2)/3. This is where the 1/3
stability slope becomes necessary.

The other two homotopies, (123) and 1, split, so we have...
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Solution to 2

® 3(132) is surjective on H, for x < (n=2)/3,

* 3(123) and 3; are zero on H, (Vx).
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Solution to 2

® 3(132) is surjective on H, for x < (n=2)/3,

* 3(123) and 3; are zero on H, (Vx).

This time we can't use the ‘ladder trick’ to combine these facts to finish the
inductive step; instead:
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Solution to 2

® 3(132) is surjective on H, for x < (n=2)/3,

* 3(123) and 3; are zero on H, (Vx).

This time we can't use the ‘ladder trick’ to combine these facts to finish the
inductive step; instead:

The existence of a split homotopy (e.g. 3123y or 31) filling the square implies that
any homotopy (e.g. 3(132)) filling the square factorises as below.

Rnt2(M) ZC:—z(M) ””” > Cn++1(M)
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Solution to 2

® 3(132) is surjective on H, for x < (n=2)/3,

* 3(123) and 3; are zero on H, (Vx).

This time we can't use the ‘ladder trick’ to combine these facts to finish the
inductive step; instead:

The existence of a split homotopy (e.g. 5(123) or 31) filling the square implies that
any homotopy (e.g. 3132)) filling the square factorises as below. Also, this
factorisation is natural w.r.t. stabilisation maps =+s.

Rnt2(M) ZC:—z(M) ””” > Cn++1(M) Rn+(M)
X (—s) O s
Rn+—3(M) ZC: 3(M) ””” > C+(M) Rn+—1(M)
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Solution to 2

® 3(132) is surjective on H, for x < (n=2)/3,

* 3(123) and 3; are zero on H, (Vx).

This time we can't use the ‘ladder trick’ to combine these facts to finish the
inductive step; instead:

The existence of a split homotopy (e.g. 5(123) or 31) filling the square implies that
any homotopy (e.g. 3132)) filling the square factorises as below. Also, this
factorisation is natural w.r.t. stabilisation maps =+s.

Rnt2(M) ZC:—z(M) ””” i Cn++1(M) Rn+(M)
T(—s) o IS 0 on Hx
Rn+—3(M) ZC: 3(M) ------ > CH (M) Rn+—1(M)
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Thanks and bibliography

Thanks for your attention!
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Thanks for your attention!
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Sketch of the spectral sequence argument deferred earlier.
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Sketch of the spectral sequence argument deferred earlier.We wanted to show that the
map f is surjective on H. up to degree 7/2 — do this by splitting it into 3 o J:
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Sketch of the spectral sequence argument deferred earlier.We wanted to show that the
map f is surjective on H. up to degree 7/2 — do this by splitting it into 3 o J:

e On H., j can be identified with (for a certain spectral sequence) the edge
homomorphism on the vertical axis EOQ,* — Eg% (which is always surjective),
followed by the sequence of extensions taking Eg. to the degree-x part of the
limit.
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Sketch of the spectral sequence argument deferred earlier.We wanted to show that the
map f is surjective on H. up to degree 7/2 — do this by splitting it into 3 o J:

e On H., j can be identified with (for a certain spectral sequence) the edge
homomorphism on the vertical axis EOQ,* — Eg% (which is always surjective),
followed by the sequence of extensions taking Eg. to the degree-x part of the
limit.By the ind. hyp., the E2-page looks like
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Sketch of the spectral sequence argument deferred earlier.We wanted to show that the
map f is surjective on H. up to degree 7/2 — do this by splitting it into 3 o J:

e On H., j can be identified with (for a certain spectral sequence) the edge
homomorphism on the vertical axis EOQ,* — Eg% (which is always surjective),
followed by the sequence of extensions taking Eg. to the degree-x part of the
limit.By the ind. hyp., the E2-page looks like

0

e On H., 3is (for a different spectral sequence) the d’-differentials in the leftmost
column.
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Sketch of the spectral sequence argument deferred earlier.We wanted to show that the
map f is surjective on H. up to degree 7/2 — do this by splitting it into 3 o J:

e On H., j can be identified with (for a certain spectral sequence) the edge
homomorphism on the vertical axis EOQ,* — Eg% (which is always surjective),
followed by the sequence of extensions taking Eg. to the degree-x part of the
limit.By the ind. hyp., the E2-page looks like

0

e On H., 3is (for a different spectral sequence) the d’-differentials in the leftmost
column.This spectral sequence = 0 in the range of interest, and by the ind. hyp.,
the E'-page looks like
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