

Stability and stable homology for moduli spaces of disconnected submanifolds

Martin Palmer-Anghel

Universität Bonn

PCMI, Utah, 12 July 2019

Definition

Fix a choice of

$$e: L \hookrightarrow \partial \bar{M}$$

where

- L is a closed, connected, smooth manifold,
- \bar{M} is a connected, smooth manifold.

Write $M = \text{int}(\bar{M})$.

Then

$$C_{nL}(M) = \text{path-component of } \frac{\text{Emb}\left(\sqcup_n L, M\right)}{\text{Diff}\left(\sqcup_n L\right)}$$

containing $[ne]$

where

- the embedding ne is n parallel copies of e in a collar neighbourhood of $\partial \bar{M}$.

Moduli space of n unlinked copies of L in M .

Examples

- Configuration spaces ($L = \text{point}$)
- Space of n -component unlinks in \mathbb{R}^3
($e: L = S^1 \hookrightarrow \partial \mathbb{B}^3$)

Remark

- $\pi_1 C_{nL}(M) = \text{motion groups}$ of $(L \hookrightarrow \partial \bar{M})$
- (a) • (point $\hookrightarrow \partial S$) \rightsquigarrow surface braid groups
- (b) • $(S^1 \hookrightarrow \mathbb{B}^3)$ \rightsquigarrow extended loop-braid groups

Aim Understand $H_*(C_{nL}(M)) \dots$ *in a stable range.*

Remark

This is typically not the same as $H_*(B\pi_1 C_{nL}(M))$.

- In example (a), it is the same if $\mathbb{S}^2 \neq S \neq \mathbb{RP}^2$.
[Fadell-Neuwirth]
- In example (b), it is not the same:

$H_i(\text{loop braid groups}) \neq 0$ for infinitely many i
since the loop braid groups contain torsion

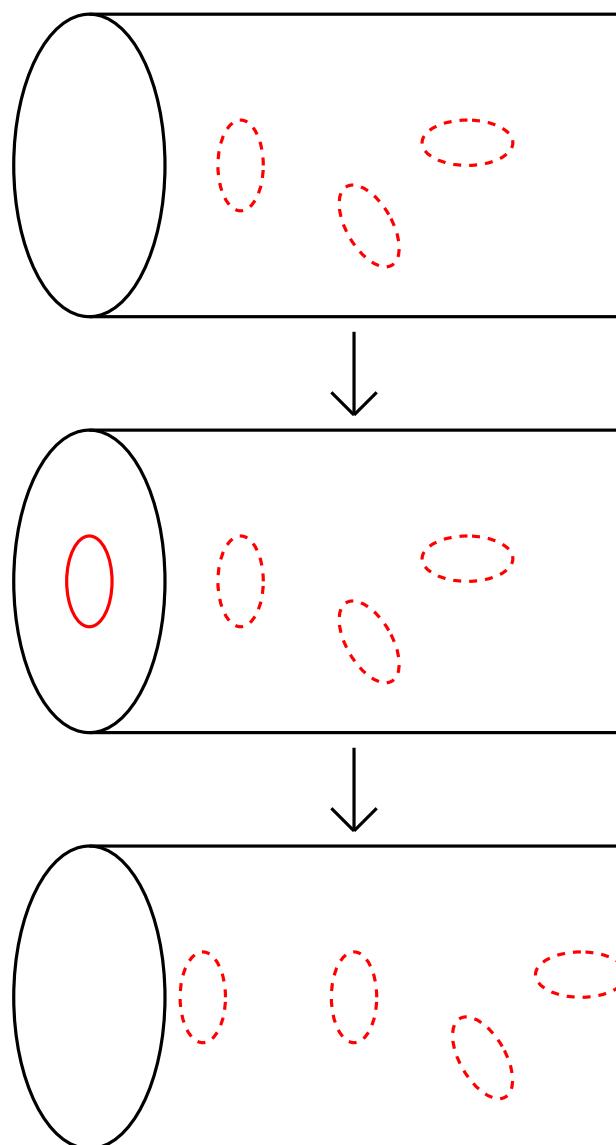
$H_i(C_{nS^1}(\mathbb{R}^3)) = 0$ for all $i > 6n$
since $C_{nS^1}(\mathbb{R}^3) \simeq 6n$ -dimensional manifold
[Brendle-Hatcher]

Consider $n \rightarrow \infty$

Definition (*Stabilisation maps*)

$$s: C_{nL}(M) \longrightarrow C_{(n+1)L}(M)$$

- Adjoin [e] to the configuration
 $\rightsquigarrow n+1$ copies of L in \bar{M}
- Push new configuration inwards along collar nbhd
 $\rightsquigarrow n+1$ copies of L in M



When $L = \text{point}$:

Theorem (McDuff, Segal)

- (a) *The map s induces isomorphisms on homology up to degree $n/2$.*
- (b) *Construct “computable” spaces $X(M)$ such that*

$$\lim_{n \rightarrow \infty} H_*(C_n(M)) \cong H_*(X(M)).$$

For example: $X(\mathbb{R}^d) = \Omega_\bullet^d S^d$

Where $\Omega_\bullet^d(-) = \text{one path-component of } \text{Map}_*(S^d, -)$.

When $\dim(L) > 0$:

Theorems

- *In the case of $C_{nS^1}(\mathbb{R}^3)$, the map s induces isomorphisms on homology up to degree $n/2$.*
[Kupers, 2013]
- *If $\dim(L) \leq \frac{1}{2}(\dim(M) - 3)$, the map s induces isomorphisms on homology up to degree $n/2$.*
[P., 2018]

Remark For the extended loop-braid groups LB_n , we also have:

- Homological stability for LB_n [Hatcher-Wahl, 2010]
- Calculation of integral homology of LB_n [Griffin, 2013]

Sketch of proof

General strategy:

- Build a simplicial complex X_n of
“ways to undo the map $s: C_{nL}(M) \rightarrow C_{(n+1)L}(M)$ ”
- Prove that X_n is *highly-connected* ($\pi_{\leq n/2} = 0$)

Homological stability machine
[Quillen,]

Here is a “toy model” of the complex X_n in our case:

- Fix $f \in \text{Emb}(\bigsqcup_n L, M)$
- Vertices:

$$\left\{ e: L \times [0, 1] \hookrightarrow \bar{M} \mid \begin{array}{l} e(L \times \{0\}) \subseteq \partial \bar{M} \\ e(L \times \{1\}) \subseteq f(\bigsqcup_n L) \end{array} \right\}$$
- A set $\{e_0, \dots, e_p\}$ spans a p -simplex if and only if the images $e_i(L \times [0, 1])$ are pairwise disjoint.

This is *contractible*:

- Any map $S^i \rightarrow X_n$ lands in $\text{span}_{X_n}(e_1, \dots, e_k)$
- **Transversality** & $2\dim(L \times [0, 1]) < \dim(M) \Rightarrow$

$$\begin{array}{c}
 D^{i+1} \longrightarrow \text{Cone}(\text{span}_{X_n}(e_1, \dots, e_k)) \\
 \cup \\
 S^i \qquad \qquad \qquad \text{span}_{X_n}(e_1, \dots, e_k, \bar{e}) \subset X_n
 \end{array}$$

Manifolds with conical singularities

Fix a closed, smooth $(d - 1)$ -manifold P and let

$$\text{Cone}(P) = (P \times [0, \infty)) / (P \times \{0\})$$

Definition (*Manifold with conical P -singularities*)

- space M
- discrete subset $A \subset M$ (set of singularities)
- smooth d -dimensional atlas on $M \setminus A$
- $\forall a \in A$: *germ* of (U_a, u_a) , where
 - U_a is an open neighbourhood of a in M
 - $u_a: U_a \rightarrow \text{Cone}(P)$ is a homeomorphism
 - taking a to the tip of the cone,
 - restricting to a diffeomorphism

$$U_a \setminus \{a\} \cong P \times (0, \infty)$$

Definition ($\text{Diff}^P(M)$)

Homeomorphisms $\varphi: M \rightarrow M$ that

- fix A setwise
- act on $M \setminus A$ by a diffeomorphism
- act on $\partial(M \setminus A)$ by the identity
- act on $\bigsqcup \{U_a \mid a \in A\}$ by $\text{Diff}(P)^A \times \mathfrak{S}_A$
(φ acts “cylindrically” near each singularity)

Example

- Graph of uniform valency v $P = \{1, 2, \dots, v\}$

More examples

For a submanifold $N \subset M$, let

$M//N$ = result of collapsing each component of N to a point

- $\mathbb{R}^3//\mathcal{L}$ for a link \mathcal{L} $P = S^1 \times S^1$
- $M//c_n$ for a point $c_n \in C_{nL}(M)$ $P = \partial T$
where $T = \text{Tub}(L \hookrightarrow M)$

Theorem (P., 2018)

$H_i(B\text{Diff}^{\partial T}(M//c_n))$ stabilises as $n \rightarrow \infty$

as long as $\dim(L) \leq \frac{1}{2}(\dim(M) - 3)$.

Sketch of proof ... that $B\text{Diff}_\partial(M, c_n)$ stabilises

$$\begin{aligned}
 C_{nL}(M) &= \text{path-comp}^t \text{ of } \text{Emb}(c_n, M)/\text{Diff}(c_n) \\
 &\equiv \text{orbit of } \text{Emb}(c_n, M)/\text{Diff}(c_n) \curvearrowleft \text{Diff}_\partial(M) \\
 &\cong \text{Diff}_\partial(M)/\text{Diff}_\partial(M, c_n) \\
 &\cong \text{fibre of } \phi
 \end{aligned}$$

\uparrow isotopy extension theorem
 \uparrow topological orbit-stabiliser theorem

$$\begin{array}{ccc}
 \frac{\text{Emb}(M, \mathbb{R}^\infty)}{\text{Diff}_\partial(M, c_n)} & \xrightarrow{\phi} & \frac{\text{Emb}(M, \mathbb{R}^\infty)}{\text{Diff}_\partial(M)} \\
 \parallel & & \parallel \\
 B\text{Diff}_\partial(M, c_n) & & B\text{Diff}_\partial(M)
 \end{array}$$

Consider $n = \infty$

Restrict to the case of $M = \mathbb{R}^d$ and write

$$C_{\infty L}(\mathbb{R}^d) = \underset{s}{\operatorname{colim}}_{n \rightarrow \infty} C_{nL}(\mathbb{R}^d)$$

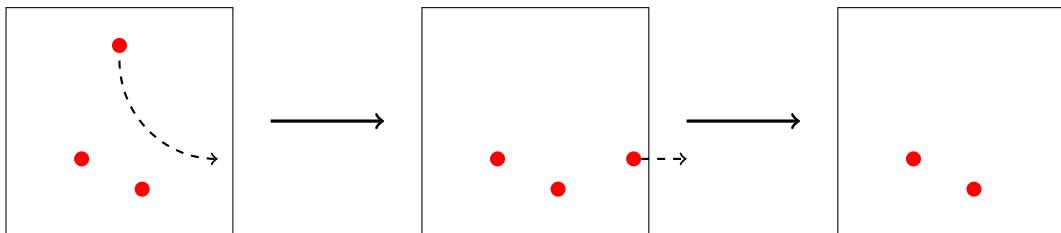
When $L = \text{point}$: McDuff-Segal prove that

$$H_*(C_{\infty}(\mathbb{R}^d)) \cong H_*(\Omega_{\bullet}^d S^d).$$

(1) They construct a homology-equivalence:

$$\begin{array}{ccc} C_{\infty}(\mathbb{R}^d) & \xrightarrow{H_* \cong} & \Omega_{\bullet}^d Z(\mathbb{R}^d) \\ & & \parallel \\ & & \bigsqcup_n C_n(\mathbb{R}^d) / \sim \end{array}$$

$$c \sim d \Leftrightarrow c \cap (0, 1)^d = d \cap (0, 1)^d$$



(2) Geometric argument:

$$Z(\mathbb{R}^d) \simeq (\mathbb{R}^d)^+ = S^d$$

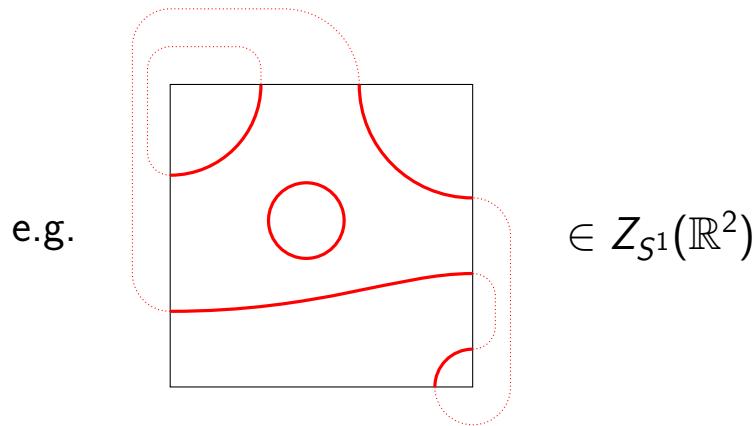
Guess for $\dim(L) > 0$:

$$C_{\infty L}(\mathbb{R}^d) \xrightarrow{??} \Omega_{\bullet}^d Z_L(\mathbb{R}^d)$$

$$\parallel$$

$$\bigsqcup_n C_{nL}(\mathbb{R}^d) / \sim$$

$$c \sim d \Leftrightarrow c \cap (0, 1)^d = d \cap (0, 1)^d$$



Geometric argument:

$$Z_L(\mathbb{R}^d) \simeq T_{\dim(L), \mathbb{R}^d}$$

$$= \{ \text{affine } \dim(L)\text{-planes in } \mathbb{R}^d \}^+$$

Counterexample: in the case $L = S^1 \hookrightarrow \partial \mathbb{B}^3$

- $H_1(\Omega_{\bullet}^3 T_{1, \mathbb{R}^3}) \otimes \mathbb{Q} \cong \mathbb{Q}$
 - $H_1(C_{nS^1}(\mathbb{R}^3)) \cong (\mathbb{Z}/2\mathbb{Z})^3$ (for $n \geq 2$)
- $$= (\mathbb{Z}/2\mathbb{Z}) \left\{ \begin{array}{c} \text{Diagram of two circles connected by a dashed line with arrows} \\ , \end{array} , \begin{array}{c} \text{Diagram of a circle with a vertical dashed line through its center} \\ , \end{array} , \begin{array}{c} \text{Diagram of two circles connected by a dashed line with arrows} \\ \end{array} \right\}$$

[Brendle-Hatcher, 2010]

New idea:**Definition**

$$Z_L(\mathbb{R}^d) \supseteq \hat{Z}_L(\mathbb{R}^d)$$

Those submanifolds of \mathbf{I}^d that are disjoint from the *union of orthogonal hyperplanes*

$$\mathbf{I}^{i-1} \times \{t_i\} \times \mathbf{I}^{d-i}$$

for some $t_1, \dots, t_d \in \mathbf{I} = (0, 1)$.

Theorem (P., 2019 (*in progress*))

There is a (twisted-)homology-equivalence

$$C_{\infty L}(\mathbb{R}^d) \longrightarrow \Omega_{\bullet}^d \hat{Z}_L(\mathbb{R}^d).$$

Remark

In general, $\hat{Z}_L(\mathbb{R}^d) \not\cong T_{\dim(L), \mathbb{R}^d}$

$$\begin{aligned} \hat{Z}_{\text{point}}(\mathbb{R}^d) &= Z_{\text{point}}(\mathbb{R}^d) \simeq T_{0, \mathbb{R}^d} = S^d \\ \hat{Z}_{S^1}(\mathbb{R}^3) &\not\cong T_{1, \mathbb{R}^3} \end{aligned}$$

Thank you for your attention!