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Bt oS Knot theory:
° |_| B, —» {knots/links in R3} [Alexander, Markov]
n>1

® Burau representation — Alexander polynomial
Algebraic geometry:
® [Moishezon]: alg. curve in CP?2 — braid monodromy Fy — By

® [Libgober]: alg. curve in CP? — invariant
using a representation of By

Homotopy theory:
® [Berrick-Cohen-Wong-Wu, 2006]:

.. {Brunnian braids in 5% x [0,1]}
~ {Brunnian braids in D2 x [0, 1]}

7.(5%)
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o Torlivia Mapping class groups of surfaces
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MCGs o
Definition

Map(S) = {diffeomorphisms of S} /isotopy

Example: Map(D,) = B, where D, = D? \. {n points}

Applications & connections:
* Map($) = m(Ms)
M = moduli space of algebraic curves of topological type S
® 3-manifold topology — via Heegaard splittings

e 4-dimensional symplectic topology [Donaldson]
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® This defines B, — GL,(Z[t*']) C GL,(R)
® Q(<[Birman'74]): Is this representation injective? (='faithful’)
® A(n < 3): Yes [Magnus-Peluso'69]
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[Burau] representation (1935):

Rep of B,

o 1ae(tTt et
(o i—1 1 0 n—i—1

This defines B, — GL,(Z[t*!]) C GL,(R)

® Q(<[Birman'74]): Is this representation injective? (='faithful")
® A(n<3): Yes [Magnus-Peluso'69]
® A(n>5): No [Moody’'91,Long-Paton’93,Bigelow’'99]
o An—4): 7

o

Q: Are the braid groups linear?
— Does B, embed into some GLy(TF)?
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[Lawrence] representation (1990) — geometric definition.
Rep of By e Diff(D,) acts on Cx(D,) (unordered configuration space)
® B, =Map(D,) = Diff(D,)/~ acts on H.(C«(D,); Z)
® Two modifications:

® Choose m1(Ck(D,)) — Q invariant under the action.
Then B, acts on H.(Ck(D,); Z[Q])

® Replace H, with H®™ (Borel-Moore homology)
Then HP™(Cy(D,); Z[Q)) is a free Z[@]-module
concentrated in degree * = k

Lawrencey: B, — GLn(Z[Q]) = Autzq (HE™(C(Dy); Z[Q]))
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How is the quotient @ defined?
e m(Dy)=F,—Z=Q “total winding number”

e m(C(Dy)) — ZDZ
(“total winding number” | “self-winding number”)

Rep of B,

Lemma
This quotient is Map(D,)-invariant, and hence

Lawrencex: B, — GLN(Z[Q])
is well-defined. Moreover, we have Lawrence; = Burau.

Theorem [Bigelow'00,Krammer'00]

Lawrence; is faithful (injective). Hence B, embeds into GLy(R).
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Q: Does Map(S) embed into GLy(F) for other surfaces S?
Map(torus) 2 SL,(Z) C GL2(R)
Map(X;) C GLea(C) [Bigelow-Budney'01]

Rep of MCGs

In general, wide open!

® Kontsevich (2006): proposal of a sketch of a construction of a
faithful finite-dimensional representation of Map(X,)

® Dunfield (cf. [Margalit'18]): computational evidence
suggesting that this will not actually be faithful

® From now on, focuson ¥ =3,
(orientable, genus g, one boundary component)

Main result [Blanchet-P.-Shaukat'21]

A new representation of (a central extension of) Tor(X) C Map(X).
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Map(X) © HP™(F(Z');Z)

Fi( ) = ordered configuration space

® Y’ =Y ~ (interval in OX)
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HP™ (F(X'); Z) is a free abelian group of finite rank
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Simplest analogue of the Lawrence representations:

Map(Z) © HP"(F(Z');Z)

® Fi( ) = ordered configuration space

® Y =% \ (interval in 0X)

— Moriyama

® untwisted Z coefficients

® HP™(Fi(X'); Z) is a free abelian group of finite rank

Theorem [Moriyama'07]
The kernel of this representation is J(k) C Map(X).

® J(k) is the k-th term of the Johnson filtration of Map(X)
® What is this?
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® Lower central seriess  m(X)=To 2 223D

o [ =[m(X),li-4] (commutators of length i + 1)

J(k) = kernel of the action of Map(X) on m1(X)/I.

® Map(X)=3J(0) >3(1) >JI(2) >3I(3)D---
® J(1) = Tor(X) = ker (Map(X) O Hi1(X; Z)) Torelli group

N 3(k) = {1}
k=1




P The Johnson filtration

Heisenberg
® Lower central seriess  m(X)=T¢ 2l D232
o [ =[m(X),li-1] (commutators of length i + 1)

Definition [Johnson'81]
~ Moriyama J(k) = kernel of the action of Map(X) on m1(X)/I.

* Map(2) =3(0) 23(1) 3(2) 23(3) ©
® J(1) = Tor(X) = ker (Map(X) O Hi(X; Z)) Torelli group

Theorem [Johnson'81]
N 3(k) = {1}

Corollary [Moriyama'07]

@ HP™ (F(X'); Z) is a faithful (co-dim.!) Map(X)-representation.
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® |dea: Enrich the representation by taking homology with twisted
coefficients Z[Q], where 1 (Ck (X)) = Bk(X) — Q.

® ( = &y corresponds to the Moriyama representations:
HE™ (Fe(Z'): Z) = H™ (Ce(X'); Z[S«]).-

® First try abelian quotients Q.

— abelian coeff

Fact (k> 2)
Z S planar
B(S)?* = m(S)** @ Z/(2k—2) S=25°
72 otherwise.

® If S is non-planar, we can only “count” the self-winding number
of braids on S mod 2. (or mod 2k — 2 if S = §?)
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Representations Rep. of MCGs — abelian twisted coefficients

® |dea: Enrich the representation by taking homology with twisted
coefficients Z[Q], where 1 (Ck (X)) = Bk(X) — Q.

® ( = &y corresponds to the Moriyama representations:
HE™ (Fe(Z'): Z) = H™ (Ce(X'); Z[S«]).-

® First try abelian quotients Q.
— abelian coeff
Fact (k> 2)
Z S planar
B(S)?* = m(S)** @ Z/(2k—2) S=25°
72 otherwise.

® If S is non-planar, we can only “count” the self-winding number
of braids on S mod 2. (or mod 2k — 2 if S = §?)

® In Z[B(S)®], the corresponding “variable” t will have order
two: t2 = 1.
— We get a much “weaker” representation...
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al,...,a
Bi(Zz1) = {(0o1,...,04_ neeentls
k( g,l) 1, » Ok l’bl,...,bg

- some relations >

Adding the relations saying that oy is central (commutes with every
element), we obtain:

Be(Te1)/( [o1, %)) = <a, e ::Zj

all pairs commute except
a,-b,- = 0’2b,'a,'
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Theorem [Bellingeri'04]

al,...,a
BkZ 1 = O1y.-.50k—-1 ’ i
CRVES C R S

- some relations >

Adding the relations saying that oy is central (commutes with every
element), we obtain:

Bi(Tg1)/ ([0, x]) = <C,, Lol

all pairs commute except
a,-b,- = O'2b,'a,'

Definition
He = Bi(Zg,1)/([o1, x]))

This is the genus-g discrete Heisenberg group.
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Rep. of MCGs — non-abelian twisted coefficients

Theorem [Bellingeri'04]

al,...,a
BkZ 1 = O1y.-.50k—-1 ’ i
CRVES C R S

- some relations >

Adding the relations saying that oy is central (commutes with every
element), we obtain:

Bi(Tg1)/ ([0, x]) = <C,, Lol

all pairs commute except
a,-b,- = O'2b,'a,'

Definition
He = Bi(Zg,1)/([o1, x]))

This is the genus-g discrete Heisenberg group. Note that:

1
Hi={ |0 C GL3(Z)
0

O = %
= % %
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Lemma
The action Map(X) O Bk(X) descends to a well-defined action on
the quotient H,.

Proof
® Aim: ker(Bx(X) — H,) is preserved by the Map(X)-action.

— non-abelian

® This is (([01, ] )), so it is enough to show that o is fixed by the
Map(X)-action.
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® This is (([01, ] )), so it is enough to show that o is fixed by the
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® Let [¢] € Map(X) = Diff(X)/~ be represented by a diffeo. ¢
that fixes pointwise a collar neighbourhood of 9%.
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Lemma

The action Map(X) O Bk(X) descends to a well-defined action on
the quotient H,.

Proof

® Aim: ker(Bx(X) — H,) is preserved by the Map(X)-action.
— non-abelian

® This is (([01, ] )), so it is enough to show that o is fixed by the
Map(X)-action.

® Let [¢] € Map(X) = Diff(X)/~ be represented by a diffeo. ¢
that fixes pointwise a collar neighbourhood of 9%.

® The loop of configurations o1 € Bx(X) = m1(Ck(X)) can be
homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:
1272 —Hy — Hi(XZ) =1
and the Map(X)-action on #, lifts the natural action on Hy(X; Z).
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(a) ker(Map(X) O Hg) = Chill(X)
(b) {» € Map(X) | ¢ acts on H,g by conjugations} = Tor(X)

Map(E) S Tor(X) > Chill(X) 5 3(2) > 3(3) O - --
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Proposition [Blanchet-P.-Shaukat'21]

(a) ker(Map(X) O Hg) = Chill(X)

(b) {® € Map(X) | ¢ acts on H, by conjugations} = Tor(X)
- nomsbelan Map(Z) D Tor(X) D Chill(£) > J(2) > I(3) D -

Idea of proof

®: Map(X) — Autt(Hz) = H x Sp(H) H = Hy(Z;Z)
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Proposition [Blanchet-P.-Shaukat'21]

(a) ker(Map(X) O Hg) = Chill(X)
(b) {® € Map(X) | ¢ acts on H, by conjugations} = Tor(X)

— nom-abelian Map(X) D Tor(X) D Chill(¥) D J(2) D I(3) D -+
Idea of proof

®: Map(X) — Autt(Hz) = H x Sp(H) H = Hy(Z;Z)

(a) Under this identification, ® = “Trapp representation”
(= the action of Map(X) on {unit vector fields on £})
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Proposition [Blanchet-P.-Shaukat'21]

(a) ker(Map(X) O Hg) = Chill(X)
(b) {® € Map(X) | ¢ acts on H, by conjugations} = Tor(X)

Map(X) D Tor(X) D Chill(X) D J(2) 2 J(3) D - --
Idea of proof

®: Map(X) — Autt(Hz) = H x Sp(H) H = Hy(Z;Z)

(a) Under this identification, ® = “Trapp representation”
(= the action of Map(X) on {unit vector fields on £})

(b) alg.: Inn(H,)+— 2H



e Rep. of MCGs — non-abelian twisted coefficients

of Torelli via

Heisenberg
Proposition [Blanchet-P.-Shaukat'21]
(a) ker(Map(X) O Hg) = Chill(X)
(b) {® € Map(X) | ¢ acts on H, by conjugations} = Tor(X)
- nomsbelan Map(Z) D Tor(X) D Chill(£) > J(2) > I(3) D -

Idea of proof

®: Map(X) — Autt(Hz) = H x Sp(H) H = Hy(Z;Z)

(a) Under this identification, ® = “Trapp representation”
(= the action of Map(X) on {unit vector fields on £})

(b) alg.: Inn(H,)+— 2H
top.: image(®) C 2H x Sp(H)



o Tl Rep. of MCGs — non-abelian twisted coefficients

Heisenberg

Theorem [Blanchet-P.-Shaukat'21]

We obtain well-defined representations, defined over Z[H,]:
(a) ChIll(E) &  HE™ (Cu(Z): Z[He])

(b) Tor() O HE™(Cu(Z): Z[H,])

where 'f(\);(Z) is a Z-central extension of Tor(X).

— non-abelian
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Theorem [Blanchet-P.-Shaukat'21]

We obtain well-defined representations, defined over Z[H,]:
(a) ChIll(E) &  HE™ (Cu(Z): Z[He])

(b) Tor() O HE™(Cu(Z): Z[H,])

where ﬂ([) is a Z-central extension of Tor(X).

— non-abelian
Idea of proof

Lemma = we obtain a twisted representation, defined over Z[#,]:

Map(Z) O  H" (Cu(T'): Z[Hg))
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Heisenberg

Theorem [Blanchet-P.-Shaukat'21]

We obtain well-defined representations, defined over Z[H,]:
(a) ChIll(E) &  HE™ (Cu(Z): Z[He])

(b) Tor() O HE™(Cu(Z): Z[H,])

where ﬁ“([) is a Z-central extension of Tor(X).

— non-abelian
Idea of proof

Lemma = we obtain a twisted representation, defined over Z[#,]:
Map(T) O H" (Cu(T): Z[H,])

“Twisted” means:

® the action is Z-linear
® there is also an action on the ground ring Z[H,]

® these are compatible: p(A.v) = ©(N).(v).






Proposition (a) = the action of Chill(X) on Z[H,] is trivial
= the representation is untwisted on Chill(X).
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Idea of proof (cont.)

Proposition (a) = the action of Chill(X) on Z[H,] is trivial
= the representation is untwisted on Chill(X).

Untwisting Lemma: A twisted representation of I over Z[G], where
— non-abelian the action ' O G is by conjugations, can be untwisted by passing to
a central extension of I' by Z(G) = Centre(G).
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Rep. of MCGs — non-abelian twisted coefficients

Idea of proof (cont.)

Proposition (a) = the action of Chill(X) on Z[H,] is trivial
= the representation is untwisted on Chill(X).

Untwisting Lemma: A twisted representation of I over Z[G], where
the action ' O G is by conjugations, can be untwisted by passing to
a central extension of I' by Z(G) = Centre(G).

Proposition (b) = we can apply the Untwisting Lemma to
= Tor(X) and G = H,.



Representations
of Torelli via
Heisenberg

— non-abelian

Rep. of MCGs — non-abelian twisted coefficients

Idea of proof (cont.)

Proposition (a) = the action of Chill(X) on Z[H,] is trivial
= the representation is untwisted on Chill(X).

Untwisting Lemma: A twisted representation of I over Z[G], where
the action ' O G is by conjugations, can be untwisted by passing to
a central extension of I' by Z(G) = Centre(G).

Proposition (b) = we can apply the Untwisting Lemma to
= Tor(X) and G = H,.

Q: What is the kernel of this representation?
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Idea of proof (cont.)

Proposition (a) = the action of Chill(X) on Z[H,] is trivial
= the representation is untwisted on Chill(X).

Untwisting Lemma: A twisted representation of I over Z[G], where
the action ' O G is by conjugations, can be untwisted by passing to
a central extension of I' by Z(G) = Centre(G).

Proposition (b) = we can apply the Untwisting Lemma to
= Tor(X) and G = H,.

Q: What is the kernel of this representation?
Q’: Is it smaller than J(k) = ker(Moriyama,)?






(k=2)
Quotient of Tor(X)-representations / twisted Map(X)-representations:

Hy™ (Go(X)i Z[Heg]) — H™ (Go(X): Z[S2])




(k=2)
Quotient of Tor(X)-representations / twisted Map(X)-representations:

Hy™ (Go(X)i Z[Heg]) — H™ (Go(X): Z[S2])
induced by Hy —» (Hg ) =Z/2& Hi(%;Z) — Z/2 = Go.




o Tl Upper bound on the kernel

Heisenberg
(k=2)
Quotient of Tor(X)-representations / twisted Map(X)-representations:
H;™ (G(X'); Z[Hg]) — Hy™ (G(T'): Z[G])
induced by Hy —» (Hg)® =Z/2® Hi(X;Z) —» Z/2 = G,.
® The right-hand side is precisely H¥™ (F>(X'); Z) = Moriyama,,

hence
Ry — ker (HP™ (G(Z'); Z[Hg])) € 3(2)



o Tl Upper bound on the kernel

Heisenberg
(k=2)
Quotient of Tor(X)-representations / twisted Map(X)-representations:
H;™ (G(X'); Z[Hg]) — Hy™ (G(T'): Z[G])
induced by Hy —» (Hg)® =Z/2® Hi(X;Z) —» Z/2 = G,.
® The right-hand side is precisely H¥™ (F>(X'); Z) = Moriyama,,

hence
Ry — ker (HP™ (G(Z'); Z[Hg])) € 3(2)

® Let v C X be a simple closed curve that separates off a genus-1
subsurface. Then the Dehn twist T, lies in J(2).
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Heisenberg
(k=2)
Quotient of Tor(X)-representations / twisted Map(X)-representations:
H;™ (G(X'); Z[Hg]) — Hy™ (G(T'): Z[G])
induced by Hy —» (Hg)® =Z/2® Hi(X;Z) —» Z/2 = G,.
® The right-hand side is precisely H¥™ (F>(X'); Z) = Moriyama,,

hence
Ry — ker (HP™ (G(Z'); Z[Hg])) € 3(2)

® Let v C X be a simple closed curve that separates off a genus-1
subsurface. Then the Dehn twist T, lies in J(2).

® Calculations = T, acts non-trivially in our representation.



o Tl Upper bound on the kernel

Heisenberg
(k=2)
Quotient of Tor(X)-representations / twisted Map(X)-representations:
H;™ (G(X'); Z[Hg]) — Hy™ (G(T'): Z[G])
induced by Hy —» (Hg)®? =Z/2® Hi(X;Z) — Z/2 = G».
® The right-hand side is precisely H¥™ (F>(X'); Z) = Moriyama,,

hence
s ker (HP™ (G(Z'); Z[Hg])) € 3(2)

® Let v C X be a simple closed curve that separates off a genus-1
subsurface. Then the Dehn twist T, lies in J(2).

® Calculations = T, acts non-trivially in our representation.

Corollary [Blanchet-P.-Shaukat'21]

The kernel of the Tor(X)-representation H2™ (Co(X); Z[HMg]) is
strictly smaller than J(2).






Set k=2and g =1.




Set k =2 and g = 1. In this case the representation
H™ (Co(E'): Z[Ha))

is free of rank 3 over Z[H;] = Z[oT](a*!, b*1)/(ab = o%ba)




Set k =2 and g = 1. In this case the representation
H™ (Co(E'): Z[Ha))

is free of rank 3 over Z[H;] = Z[oT](a*!, b*1)/(ab = o%ba)
Let v be a curve isotopic to 0¥ = 0% ;. Then T, acts via:




Set k =2 and g = 1. In this case the representation

H;™ (Co(T'): Z[Ha))

is free of rank 3 over Z[H;] = Z[oT](a*!, b*1)/(ab = o%ba)

Let v be a curve isotopic to 0¥ = 0% 1.
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Thank you!
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