

Homological stability for asymptotic monopole moduli spaces

Martin Palmer-Anghel // Workshop for Young Researchers in Mathematics // 20 May 2022

Abstract.

Magnetic monopoles were introduced by Dirac in 1931 to explain the quantisation of electric charges. In his model, they are singular solutions to an extension of Maxwell's equations allowing non-zero magnetic charges. An alternative model, developed by 't Hooft and Polyakov in the 1970s, is given (in the BPS limit) by smooth solutions to a different set of equations, the *Bogomolny equations*. The moduli space of all solutions has connected components M_k indexed by positive integers k (the “magnetic charge”). These have been intensively studied, notably by Donaldson (an interpretation in terms of rational self-maps of \mathbb{CP}^1), Segal (the homotopy type of M_k “stabilises” as k goes to infinity) and Cohen-Cohen-Mann-Milgram (describing the homology of M_k in terms of braid groups). A compactification of M_k has recently been proposed by Fritzsch-Kottke-Singer, whose boundary strata we call *asymptotic monopole moduli spaces*. I will describe ongoing joint work with U. Tillmann in which we study stability patterns in the homology of these spaces.