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Aims Applications of braid group representations:

® Linearity: B, embeds into GLy(R)
[Bigelow, Krammer]
using Lawrence representations

® Applications to knot theory (Alexander and Markov theorems)

® Applications to algebraic geometry (invariants of curves in CP?)
[Moishezon, Libgober]

Aim:
® Construct analogues of the Lawrence representations for

Map(Zg,l) = Wo(Diffa(ng))

® (~ linearity?)

® (~~ extensions to 3-dim. TQFT?)
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Vi Hisenberg Representations of braid groups — Burau
Rl 2 [Burau] representation (1935):

o 1ae(tTt et
(o i—1 1 0 n—i—1

This defines B, — GL,(Z[t*!]) C GL,(R)

® Q([Birman'74]): Is this representation injective? (='faithful’)

® A(n<3): Yes [Magnus-Peluso'69]
® A(n>5): No [Moody’'91,Long-Paton’93,Bigelow’'99]
o An—4): 7

o

Q: Are the braid groups linear?
— Does B, embed into some GLy(TF)?



[Lawrence] representation (1990) — geometric definition.




[Lawrence] representation (1990) — geometric definition.

® Diffy(D,) acts on C(D,) (unordered configuration space)
(Dn = closed 2-disc minus n punctures)




[Lawrence] representation (1990) — geometric definition.

® Diffy(D,) acts on C(D,) (unordered configuration space)
(Dn = closed 2-disc minus n punctures)

® B, =Map(D,) = mo(Diff5(D,)) acts on H.(Cx(D,); Z)




Vi Hisenberg Representations of braid groups — Lawrence
Repr of By [Lawrence] representation (1990) — geometric definition.
e Diffy(D,) acts on Cx(Dp,) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)
® B, = Map(D,) = mo(Diff5(D,)) acts on H.(Ck(D,); Z)

® Two modifications:



Vi Hisenberg Representations of braid groups — Lawrence
Repr of By [Lawrence] representation (1990) — geometric definition.
e Diffy(D,) acts on Cx(Dp,) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)
® B, = Map(D,) = mo(Diff5(D,)) acts on H.(Ck(D,); Z)
® Two modifications:

® Choose m1(Ck(Dp)) = Q invariant under the action.
Then B, acts on H,.(Cx(D,); Z[Q])



Vi Hisenberg Representations of braid groups — Lawrence

Repr of By [Lawrence] representation (1990) — geometric definition.

e Diffy(D,) acts on Cx(Dp,) (unordered configuration space)
(Dn = closed 2-disc minus n punctures)

® B, = Map(D,) = mo(Diff5(D,)) acts on H.(Ck(D,); Z)

® Two modifications:

® Choose m1(Ck(Dp)) = Q invariant under the action.
Then B, acts on H,.(Cx(D,); Z[Q])

® Replace H, with HEM (Borel-Moore homology)
Then HEM(C(D,); Z[Q)) is a free Z[Q]-module
concentrated in degree x = k
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Repr of By [Lawrence] representation (1990) — geometric definition.

e Diffy(D,) acts on Cx(Dp,) (unordered configuration space)
(Dn = closed 2-disc minus n punctures)

® B, = Map(D,) = mo(Diff5(D,)) acts on H.(Ck(D,); Z)
® Two modifications:

® Choose m1(Ck(Dp)) = Q invariant under the action.
Then B, acts on H,.(Cx(D,); Z[Q])

® Replace H, with HEM (Borel-Moore homology)
Then HEM(C(D,); Z[Q)) is a free Z[Q]-module
concentrated in degree x = k

Lawrencex: B, — GLn(Z[Q]) = Autzq (HfM(Ck(D,,); Z[Q]))
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(“total winding number” | “self-winding number")

This quotient is Map(D,)-invariant, and hence
Lawrencex: B, — GLn(Z[Q])

is well-defined.
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Vi Hisenberg Representations of braid groups — Lawrence

Repr of B, How is the quotient @ defined?
e m(Dy)=F,—Z=Q “total winding number”
o T (C(Dy) —ZaZ
(“total winding number” | “self-winding number”)

Lemma
This quotient is Map(D,)-invariant, and hence
Lawrencex: B, — GLN(Z[Q])

is well-defined. Moreover, we have Lawrence; = Burau.

Theorem [Bigelow'00,Krammer'00]

Lawrence; is faithful (injective). Hence B, embeds into GLy(R).



® Q: Does Map(S) embed into GLy(IF) for other surfaces 57




® Q: Does Map(S) embed into GLy(IF) for other surfaces 57
e Map(torus) = SL,(Z) C GLy(R)




® Q: Does Map(S) embed into GLy(IF) for other surfaces 57
e Map(torus) = SL,(Z) C GLy(R)
® Map(X,) C GLea(C) [Bigelow-Budney'01]




Q: Does Map(S) embed into GLy(IF) for other surfaces S?
Map(torus) & SL,(Z) C GLy(R)
Map(X2) C GLea(C) [Bigelow-Budney'01]

In general, wide open.
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® Kontsevich (2006): proposal of a sketch of a construction of a
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® Dunfield (cf. [Margalit'18]): computational evidence
suggesting that this will not actually be faithful

® From now on, focuson ¥ =3,
(orientable, genus g, one boundary component)

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of Map(X).
(“Genuine” analogues of the Lawrence representations)
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Map(X) © HEM(F(X');Z)

Fi( ) = ordered configuration space

Y = X \ (interval in 0X)

® untwisted 7 coefficients

HEM (Fi(X'); Z) is a free abelian group of finite rank
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Simplest analogue of the Lawrence representations:

Map(L) © HEM(F(Y));2)

— Moriyama

® Fi( ) = ordered configuration space

Y =¥\ (interval in 0%)

untwisted 7 coefficients

HEM (Fk(X');Z) is a free abelian group of finite rank

Theorem [Moriyama'07]
The kernel of this representation is J(k) C Map(X).

® J(k) is the k-th term of the Johnson filtration of Map(X)
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o [ =[m(X),li-4] (commutators of length i)

J(k) = kernel of the action of Map(X) on 71(X)/Tkt1-

® Map(X)=3J(0) >3(1) >JI(2) >3I(3)D---
® J(1) = Tor(X) = ker (Map(X) O Hi1(X; Z)) Torelli group

N 3(k) = {1}
k=1




R The Johnson filtration

® Lower central seriess  m(X)=T1 2l D322

o [ =[m(X), i 1] (commutators of length /)

— Moriyama Def'n't'on [JOhnSOn,S].]

J(k) = kernel of the action of Map(X) on 71(X)/T k1.

* Map(2) =3(0) 23(1) 3(2) 23(3) ©
® J(1) = Tor(X) = ker (Map(X) O Hi(X; Z)) Torelli group

Theorem [Johnson'81]
N 3(k) = {1}

Corollary [Moriyama'07]

P HEY (Fi(X'); Z) is a faithful (co-rank) Map(X)-representation.
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® (Q = & corresponds to the Moriyama representations:
HEM (Fi(X') Z) = HEM (C(X'): Z[S]).
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via Helsonborg Rep. of MCGs — abelian twisted coefficients

® |dea: Enrich the representation by taking homology with twisted
coefficients Z[Q], where 1 (Ck (X)) = Bk(X) — Q.

® ( = &y corresponds to the Moriyama representations:
R HEM (Fi(Z'); Z) = HEM (Cu(Z'); Z[&K]).

® First try abelian quotients Q.

Fact (k > 2)
Z S planar
Bi(S)* = m(S)* e {Z/(2k-2) S=25°
Z)2 otherwise.

® |f S is non-planar, we can only count the self-winding number
(“writhe”) of S-braids mod 2. (or mod 2k — 2 if S = §?)

® In Z[Bx(S)™], the corresp. variable t has order two: t? = 1.
~> we get a much “weaker” representation...
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al,...,da
Bi(Zz1) = {(0o1,...,04_ peeenty
k( g,l) 1, » Ok l’bl,...,bg

- some relations >

Adding the relations saying that oy is central (commutes with every
element), we obtain:

Bk(zg,l)/« [0’1,X] >> = <0-’ Zi: : Zi

all pairs commute except
a,-b,- = o2b,-a,-
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Theorem [Bellingeri'04]
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element), we obtain:
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all pairs commute except
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Definition
Hg = Bu(Xg1)/ (o1, x]))

This is the genus-g discrete Heisenberg group.
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Rep. of MCGs — Heisenberg twisted coefficients

Theorem [Bellingeri'04]

dl,...,a
BkZ 1 = O01y.-.,0k—-1 ’ i
CRVES C R S

- some relations >

Adding the relations saying that o is central (commutes with every
element), we obtain:

Bi(g.1)/(lon, 1) = <0, el

all pairs commute except
a,-b,- = O'zb,'a,'

Definition
Hg = Bu(Xg1)/ (o1, x]))

This is the genus-g discrete Heisenberg group. Note that:

Hy & C GL3(Q)

O O =
o~ N
— NhIN
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The action Map(X) O Bk(X) descends to a well-defined action on
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Lemma

The action Map(X) O Bk(X) descends to a well-defined action on
the quotient H,.

Proof
— Heisenberg

® Aim: ker(Bx(X) — H,) is preserved by the Map(X)-action.

® This is (([01, ] )), so it is enough to show that o is fixed by the
Map(X)-action.

® Let [¢] € Map(X) = Diff(X)/~ be represented by a diffeo. ¢
that fixes pointwise a collar neighbourhood of 9%.

® The loop of configurations o1 € Bx(X) = m1(Ck(X)) can be
homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:
1272 —Hy — Hi(XZ) =1
and the Map(X)-action on #, lifts the natural action on Hy(X; Z).
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We obtain a twisted representation, defined over Z[H,]:
Map(Z) O HM(C(Z')i Z[Hg]) =V
— Heisenberg
“Twisted representation” really means we have:
® a Z[Hg]-module ,V for each 7 € Aut™(H,)
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Rep. of MCGs — Heisenberg twisted coefficients

Corollary

We obtain a twisted representation, defined over Z[H,]:

Map(Z) O  HM(CG(Z')iZIH]) =V

“Twisted representation” really means we have:
® a Z[Hg]-module ,V for each 7 € Aut™(H,)
® isomorphisms .,V — ;V for each ¢ € Map(X), 7 € Aut™ (H,)
(where @, € Aut™(H,) is the action of o on Hy)
In other words a functor Ac(Map(X) O Hg) — Modzz,-
(where Ac(Map(X) O Hg) is the action groupoid)

Note

Replace the coefficients Z[#,] with any 7{,-representation W over R
to get a twisted Map(X)-representation V(W) over R.
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How to untwist this representation?

Three methods:

(1) On the Torelli group Tor(X) C Map(X)
for any Hg-representation W.

(2) On the (stably) universal central extension of Map(X)
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via Heisenberg Rep. of MCGs — Heisenberg twisted coefficients

Problem

How to untwist this representation?

— Heisenberg

Three methods:
(1) On the Torelli group Tor(X) C Map(X)

for any Hg-representation W.

(2) On the (stably) universal central extension of Map(X)
for W = Wscp, the Schrédinger representation of H,.

(3) Directly on the mapping class group Map(X)
for W = Wi, the linearised tautological representation of H,.
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The pre-image of Inn(Hg) C Aut(H) under o: Map(X) — Aut(H,) is
the Torelli group.

We obtain a central extension of the Torelli group:

7 — 7

! |

Tor(X) —%— H,

l l

Tor(X) —*— Inn(Hg)

The twisted representation provides ;o,.V — ;V for ¢ € Tor(X).
Given a lift ¢ to Tor(X), the element a(p) provides ;V — o, V.



MCG repr's
via Heisenberg

— Torelli

Rep. of MCGs — restricting to the Torelli group

Proposition

The pre-image of Inn(?,) C Aut(H,) under o: Map(X) — Aut(#H,) is
the Torelli group.

We obtain a central extension of the Torelli group:
_—

[
L

Tor(X) —*— H

L

Tor(¥X) —— Inn(H,)

The twisted representation provides o,V — ;V for ¢ € Tor(X).
Given a lift ¢ to Tor(X), the element &(p) provides [V — o, V.

Lemma

The central extension Tor(X) of Tor(X) turns out to be trivial.






(b,' cai = aj +20‘)



’HgEZ<O',21,--- ,ag) NZ(bl,...,bg> (b,--a,-=a,-+2o)
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,Hg EZ(O’,QL--- ,ag) X Z(bl,...,bg> (bi - ai = aj + 20)
HY = R(o,a1, - ,ag) X R(by,..., bg)
One-dimensional repr. R{o, a1, ,ag) — R{o) — S = U(1)

given by t — exp(hti/2) for fixed h > 0
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Definition (Schrodinger representation)

Hg %Z<O’,31,"' ,ag> X Z<b1,...,bg> (b,--a,- = a,-+2cr)
HE = R(o, a1, ,ag) X R{by,..., bg)
One-dimensional repr. R(c, a1, -, ag) — R{o) — St = U(1)

given by t — exp(hti/2) for fixed i > 0
Induction ~~ unitary representation

— Schrodinger Hg C H;e — U(WSch) WSCh = L2(Rg)

Theorem ((corollary of) Stone-von Neumann)

For ¢ € Aut(HZ®) there is a unique inner automorphism T () of
U(Wscp) such that the following square commutes:

'ng — U( WSch)

”l er

H;e — U( WSch)



For ¢ € Aut(#5¢) there is a unique inner automorphism T(y) of
U(Wsch) such that the following square commutes:

'H?e — U( WSch)

Wl lmo)

HRe — U(Wan)
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Theorem ((corollary of) Stone-von Neumann)

For ¢ € Aut(Hg®) there is a unique inner automorphism T () of
U(Wsch) such that the following square commutes:
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smiemrves  Rep. of MCGs — untwisting via Schrodinger Hg-rep
Theorem ((corollary of) Stone-von Neumann)

For ¢ € Aut(Hg®) there is a unique inner automorphism T () of
U(Wsch) such that the following square commutes:

H;e — U( WSch)

“’l lw)

H;e — U( WSch)
— Schrodinger

Since Inn(U(Wse,)) = PU(Wsep,), we obtain

Map(Z)unv = U(Wsch)

l l

Map(Z) —%— Aut™(Hg) C Aut™(HR®) —— PU(Wscn)

and « allows us to untwist the representation:

Map(Z)*"™ — U (HEM(Ci(Z'); Ween)) = U(V(Ween))
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Hy = 7261 =7 x Hy(X) with (k,x)(l,y) = (k+ 1+ x.y,x+y)
Give 7?61 its usual affine structure (a torsor over itself)
Obs;: Left multiplication Hg O H, preserves the affine structure.

Tautiin: Hg — Aff(Z*6*) C GL(Wiin) Wi, =26 0 7
g
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Hy = 7261 =7 x Hy(X) with (k,x)(l,y) = (k+ 1+ x.y,x+y)
Give Z2&*! its usual affine structure (a torsor over itself)
Obs;: Left multiplication Hg O H, preserves the affine structure.

Tauty: Hg — Aff(Z%71) C GL(Wiin) Wi, = Z*6 1 3 Z

Obs;: Every (orientation-preserving) automorphism of H, preserves
the structure of Z%*! as a free Z-module.

Map(X) —2 Aut™(H,) —9s GL(Z%+1) <% Gr(w;,)

— tautological
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Rep. of MCGs — untwisting via tautological Hg-rep

Hy = 7261 =7 x Hy(X) with (k,x)(l,y) = (k+ 1+ x.y,x+y)
Give Z2&*! its usual affine structure (a torsor over itself)
Obs;: Left multiplication Hg O H, preserves the affine structure.

Tauty: Hg — Aff(Z%71) C GL(Wiin) Wi, = Z*6 1 3 Z

Obs;: Every (orientation-preserving) automorphism of H, preserves
the structure of Z%6+1 as a free Z-module.

Map(X) —2 Aut™(H,) —9s GL(Z%+1) <% Gr(w;,)
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This untwists the representation with coefficients in Wj;,:



MCG repr's

via Heisenberg

— tautological

Rep. of MCGs — untwisting via tautological Hg-rep

Hy = 7261 =7 x Hy(X) with (k,x)(l,y) = (k+ 1+ x.y,x+y)
Give Z2&*! its usual affine structure (a torsor over itself)
Obs;: Left multiplication Hg O H, preserves the affine structure.

Tauty: Hg — Aff(Z%71) C GL(Wiin) Wi, = Z*6 1 3 Z

Obs;: Every (orientation-preserving) automorphism of H, preserves
the structure of Z%6+1 as a free Z-module.

Map(X) —2 Aut™(H,) —9s GL(Z%+1) <% Gr(w;,)

Lemma

This untwists the representation with coefficients in Wj;,:

Map(x) — GL (H"(Cu(T'); Win)) = GL(V(Whin))
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For k > 2 and W = Hg-representation over R, we obtain:

® a Tor(X)-representation V(W) over R;
* a unitary Map(X)""V-representation V(W) if W = We;
® a Map(X)-representation V(W) over Z if W = Wi,.



MCG repr's
via Heisenberg

Kernel

Upper bound on the kernel

Summary

For k > 2 and W = H;-representation over R, we obtain:
® a Tor(X)-representation V(W) over R;
® a unitary %(Z)“”iv—representation V(W) if W= Wsep;
® a Map(X)-representation V(W) over Z if W = Wj,.

Lemma
As an R-module, V(W) = @ W.
(k+25 1)

For example, V(Wi») is a free Z-module of rank (2g + 2)(*"%¢71).
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MCG repr's
via Heisenberg

Kernel

Upper bound on the kernel

Summary

For k > 2 and W = H;-representation over R, we obtain:
® a Tor(X)-representation V(W) over R;
® a unitary %(Z)“”iv—representation V(W) if W= Wsep;
® a Map(X)-representation V(W) over Z if W = Wj,.

Lemma
As an R-module, V(W) = @ W.
(k+25 1)

For example, V(Wi») is a free Z-module of rank (2g + 2)(*"%¢71).

Q: What is the kernel of this representation?
Q': Is it smaller than J(k) = ker(Moriyama, )?
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(k=2)
Quotient of (twisted) Map(X)-representations:

HPM (Go(T): Z[Hg)) — HZM (Go(X'): Z[G])

induced by Hgy —» (Hg)* =Z/2® Hi(X) — Z/2 = &,.




(k=2)
Quotient of (twisted) Map(X)-representations:

HPM (G Z[H]) — Hy" (G(E'): ZIS2])
induced by Hgy —» (Hg)* =Z/2® Hi(X) — Z/2 = &,.
® The right-hand side is HZY (F(X'); Z) = Moriyamay,, hence

ker (H7" (G(X)i Z[Hel)) € 3(2)
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(k=2)
Quotient of (twisted) Map(X)-representations:

HM (Go(Z'): Z[Hg]) — HPM (Go(T'): Z[S2])
induced by Hy —» (Hg)? =7Z/2® Hi(X) — Z/2 = &,.
® The right-hand side is HEM (F(X'); Z) = Moriyama,, hence

ker (Hy" (G(X)i ZIHe]) € 3(2)

Kernel

® let v C X be a simple closed curve that separates off a genus-1
subsurface. Then the Dehn twist T, lies in J(2).
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(k=2)
Quotient of (twisted) Map(X)-representations:

HM (Go(Z'): Z[Hg]) — HPM (Go(T'): Z[S2])
induced by Hy —» (Hg)? =7Z/2® Hi(X) — Z/2 = &,.
® The right-hand side is HEM (F(X'); Z) = Moriyama,, hence

ker (Hy" (G(X)i ZIHe]) € 3(2)

Kernel

® let v C X be a simple closed curve that separates off a genus-1
subsurface. Then the Dehn twist T, lies in J(2).

® Calculations = T, acts non-trivially in our representation.



MCG repr's

via Helsonborg Upper bound on the kernel

(k=2)
Quotient of (twisted) Map(X)-representations:

HPM (Co(X): Z[H]) — Hy (Go(X'): ZIS2])
induced by Hy —» (Hg)? =7Z/2® Hi(X) — Z/2 = &,.
® The right-hand side is HEM (F(X'); Z) = Moriyama,, hence

ker (Hy" (G(X)i ZIHe]) € 3(2)

Kernel

® let v C X be a simple closed curve that separates off a genus-1
subsurface. Then the Dehn twist T, lies in J(2).

® Calculations = T, acts non-trivially in our representation.

Corollary
The kernel of HEM (Cy(X'); Z[H,]) is strictly smaller than J(2).
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Set k =2 and g = 1. In this case the representation
HM (Go(X'): Z[Ha])

is free of rank 3 over Z[H;] = Z[oT](a*!, b*1)/(ab = 0% ba)
Let v be a curve isotopic to 0¥ = 0% ;. Then T, acts via:
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Set k =2 and g = 1. In this case the representation

HY (Go(X'): Z[Ha])

is free of rank 3 over Z[H;] = Z[oT](a*!, b*1)/(ab = 0% ba)
Let v be a curve isotopic to 0¥ = 0% ;. Then T, acts via:

o o ta g b (om0 F)a bt
(073 =0 )a b0 0 %)a b

(0*+1-20 "0 240 *)a 2P —ga 2 b+
(~o*toto —02)a 2 —o a4
(~1+o 40 —07")a b

oo o % -0 Ih
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(1420 =02 =0 40 %)a 2b+(0—1)a 2b*+
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Exercise: this reduces to the identity if we set a = b = 02 = 1.
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Vi Hisenberg Summary and outlook
By: Lawrencey & P, Z[Z?] ~——~——~—— linearity
Map(Xg.1): Moriyama, ~——~—~——— kernel = J(k)

twisted representations V(W) = P, W

TN

TOI‘(ng) %(2g71)univ Nlap(zgﬂ)
(any W) (W = Schradinger) (W = Tauty,)
Summary kernel C J(k)  (when W = Z[H,])
kernel C J(2)  (for k =2)

Q: linearity? ~——~——~— study V(W) for well-chosen W
extensions to TQFTs?

Thank you for your attention!
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