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Applications of braid group representations:

• Linearity: Bn embeds into GLN(R)
[Bigelow, Krammer]

using Lawrence representations

• Applications to knot theory (Alexander and Markov theorems)

• Applications to algebraic geometry (invariants of curves in CP2)
[Moishezon, Libgober]

Aim:

• Construct analogues of the Lawrence representations for

Map(Σg ,1) = π0(Diff∂(Σg ,1))

• ( linearity?)

• ( extensions to 3-dim. TQFT?)
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Representations of braid groups – Burau

[Burau] representation (1935):

σi 7−→ Ii−1 ⊕
(

1− t t
1 0

)
⊕ In−i−1

• This defines Bn −→ GLn(Z[t±1]) ⊂ GLn(R)

• Q([Birman’74]): Is this representation injective? (≡‘faithful’)

• A(n 6 3): Yes [Magnus-Peluso’69]

• A(n > 5): No [Moody’91,Long-Paton’93,Bigelow’99]

• A(n = 4): ??

• Q: Are the braid groups linear?
— Does Bn embed into some GLN(F)?
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Representations of braid groups – Lawrence

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• Bn = Map(Dn) = π0(Diff∂(Dn)) acts on H∗(Ck(Dn);Z)

• Two modifications:

• Choose π1(Ck(Dn))� Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Then HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ GLN(Z[Q]) = AutZ[Q]

(
HBM
∗ (Ck(Dn);Z[Q])

)
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Representations of braid groups – Lawrence

How is the quotient Q defined?

• π1(Dn) = Fn −→ Z = Q “total winding number”

• π1(Ck(Dn)) −→ Z⊕ Z
(“total winding number”, “self-winding number”)

Lemma

This quotient is Map(Dn)-invariant, and hence

Lawrencek : Bn −→ GLN(Z[Q])

is well-defined. Moreover, we have Lawrence1 = Burau.

Theorem [Bigelow’00,Krammer’00]

Lawrence2 is faithful (injective). Hence Bn embeds into GLN(R).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Representations of braid groups – Lawrence

How is the quotient Q defined?

• π1(Dn) = Fn −→ Z = Q “total winding number”

• π1(Ck(Dn)) −→ Z⊕ Z
(“total winding number”, “self-winding number”)

Lemma

This quotient is Map(Dn)-invariant, and hence

Lawrencek : Bn −→ GLN(Z[Q])

is well-defined. Moreover, we have Lawrence1 = Burau.

Theorem [Bigelow’00,Krammer’00]

Lawrence2 is faithful (injective). Hence Bn embeds into GLN(R).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Representations of braid groups – Lawrence

How is the quotient Q defined?

• π1(Dn) = Fn −→ Z = Q “total winding number”

• π1(Ck(Dn)) −→ Z⊕ Z
(“total winding number”, “self-winding number”)

Lemma

This quotient is Map(Dn)-invariant, and hence

Lawrencek : Bn −→ GLN(Z[Q])

is well-defined. Moreover, we have Lawrence1 = Burau.

Theorem [Bigelow’00,Krammer’00]

Lawrence2 is faithful (injective). Hence Bn embeds into GLN(R).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Representations of braid groups – Lawrence

How is the quotient Q defined?

• π1(Dn) = Fn −→ Z = Q “total winding number”

• π1(Ck(Dn)) −→ Z⊕ Z
(“total winding number”, “self-winding number”)

Lemma

This quotient is Map(Dn)-invariant, and hence

Lawrencek : Bn −→ GLN(Z[Q])

is well-defined.

Moreover, we have Lawrence1 = Burau.

Theorem [Bigelow’00,Krammer’00]

Lawrence2 is faithful (injective). Hence Bn embeds into GLN(R).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Representations of braid groups – Lawrence

How is the quotient Q defined?

• π1(Dn) = Fn −→ Z = Q “total winding number”

• π1(Ck(Dn)) −→ Z⊕ Z
(“total winding number”, “self-winding number”)

Lemma

This quotient is Map(Dn)-invariant, and hence

Lawrencek : Bn −→ GLN(Z[Q])

is well-defined. Moreover, we have Lawrence1 = Burau.

Theorem [Bigelow’00,Krammer’00]

Lawrence2 is faithful (injective). Hence Bn embeds into GLN(R).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Representations of braid groups – Lawrence

How is the quotient Q defined?

• π1(Dn) = Fn −→ Z = Q “total winding number”

• π1(Ck(Dn)) −→ Z⊕ Z
(“total winding number”, “self-winding number”)

Lemma

This quotient is Map(Dn)-invariant, and hence

Lawrencek : Bn −→ GLN(Z[Q])

is well-defined. Moreover, we have Lawrence1 = Burau.

Theorem [Bigelow’00,Krammer’00]

Lawrence2 is faithful (injective). Hence Bn embeds into GLN(R).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Representations of mapping class groups

• Q: Does Map(S) embed into GLN(F) for other surfaces S?

• Map(torus) ∼= SL2(Z) ⊂ GL2(R)

• Map(Σ2) ⊂ GL64(C) [Bigelow-Budney’01]

• In general, wide open.

• Kontsevich (2006): proposal of a sketch of a construction of a

faithful finite-dimensional representation of Map(Σg )
• Dunfield (cf. [Margalit’18]): computational evidence

suggesting that this will not actually be faithful

• From now on, focus on Σ = Σg ,1

(orientable, genus g , one boundary component)

Main result [Blanchet-P.-Shaukat’21]

A new family of representations of Map(Σ).
(“Genuine” analogues of the Lawrence representations)
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• Map(torus) ∼= SL2(Z) ⊂ GL2(R)

• Map(Σ2) ⊂ GL64(C) [Bigelow-Budney’01]

• In general, wide open.

• Kontsevich (2006): proposal of a sketch of a construction of a

faithful finite-dimensional representation of Map(Σg )
• Dunfield (cf. [Margalit’18]): computational evidence

suggesting that this will not actually be faithful

• From now on, focus on Σ = Σg ,1
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Representations of MCGs – Moriyama

Simplest analogue of the Lawrence representations:

Map(Σ) 	 HBM
k (Fk(Σ′);Z)

• Fk( ) = ordered configuration space

• Σ′ = Σ r (interval in ∂Σ)

• untwisted Z coefficients

• HBM
k (Fk(Σ′);Z) is a free abelian group of finite rank

Theorem [Moriyama’07]

The kernel of this representation is J(k) ⊂ Map(Σ).

• J(k) is the k-th term of the Johnson filtration of Map(Σ)
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The Johnson filtration

• Lower central series: π1(Σ) = Γ1 ⊇ Γ2 ⊇ Γ3 ⊇ Γ4 ⊇ · · ·
• Γi = [π1(Σ), Γi−1] (commutators of length i)

Definition [Johnson’81]

J(k) = kernel of the action of Map(Σ) on π1(Σ)/Γk+1.

• Map(Σ) = J(0) ⊃ J(1) ⊃ J(2) ⊃ J(3) ⊃ · · ·
• J(1) = Tor(Σ) = ker (Map(Σ) 	 H1(Σ;Z)) Torelli group

Theorem [Johnson’81]
∞⋂
k=1

J(k) = {1}

Corollary [Moriyama’07]
∞⊕
k=1

HBM
k (Fk(Σ′);Z) is a faithful (∞-rank) Map(Σ)-representation.
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Rep. of MCGs – abelian twisted coefficients

• Idea: Enrich the representation by taking homology with twisted
coefficients Z[Q], where π1(Ck(Σ′)) = Bk(Σ)� Q.

• Q = Sk corresponds to the Moriyama representations:
HBM

k (Fk(Σ′);Z) = HBM
k (Ck(Σ′);Z[Sk ]).

• First try abelian quotients Q.

Fact (k > 2)

Bk(S)ab ∼= π1(S)ab ⊕

 Z S planar
Z/(2k − 2) S = S2

Z/2 otherwise.


• If S is non-planar, we can only count the self-winding number

(“writhe”) of S-braids mod 2. (or mod 2k − 2 if S = S2)

• In Z[Bk(S)ab], the corresp. variable t has order two: t2 = 1.
 we get a much “weaker” representation...
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Rep. of MCGs – Heisenberg twisted coefficients

Theorem [Bellingeri’04]

Bk(Σg ,1) ∼=
〈
σ1, . . . , σk−1,

a1, . . . , ag
b1, . . . , bg

∣∣∣∣ · · · some relations · · ·
〉

Adding the relations saying that σ1 is central (commutes with every
element), we obtain:

Bk(Σg ,1)/〈〈 [σ1, x ] 〉〉 ∼=
〈
σ,

a1, . . . , ag
b1, . . . , bg

∣∣∣∣ all pairs commute except
aibi = σ2biai

〉

Definition

Hg = Bk(Σg ,1)/〈〈 [σ1, x ] 〉〉

This is the genus-g discrete Heisenberg group. Note that:

H1
∼=


1 Z Z

2
0 1 Z
0 0 1

 ⊂ GL3(Q)
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Lemma

The action Map(Σ) 	 Bk(Σ) descends to a well-defined action on
the quotient Hg .

Proof

• Aim: ker(Bk(Σ)� Hg ) is preserved by the Map(Σ)-action.

• This is 〈〈 [σ1, x ] 〉〉, so it is enough to show that σ1 is fixed by the
Map(Σ)-action.

• Let [ϕ] ∈ Map(Σ) = Diff(Σ)/∼ be represented by a diffeo. ϕ
that fixes pointwise a collar neighbourhood of ∂Σ.

• The loop of configurations σ1 ∈ Bk(Σ) = π1(Ck(Σ)) can be
homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

1→ Z −→ Hg −→ H1(Σ;Z)→ 1

and the Map(Σ)-action on Hg lifts the natural action on H1(Σ;Z).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Rep. of MCGs – Heisenberg twisted coefficients

Lemma

The action Map(Σ) 	 Bk(Σ) descends to a well-defined action on
the quotient Hg .

Proof

• Aim: ker(Bk(Σ)� Hg ) is preserved by the Map(Σ)-action.

• This is 〈〈 [σ1, x ] 〉〉, so it is enough to show that σ1 is fixed by the
Map(Σ)-action.

• Let [ϕ] ∈ Map(Σ) = Diff(Σ)/∼ be represented by a diffeo. ϕ
that fixes pointwise a collar neighbourhood of ∂Σ.

• The loop of configurations σ1 ∈ Bk(Σ) = π1(Ck(Σ)) can be
homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

1→ Z −→ Hg −→ H1(Σ;Z)→ 1

and the Map(Σ)-action on Hg lifts the natural action on H1(Σ;Z).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Rep. of MCGs – Heisenberg twisted coefficients

Lemma

The action Map(Σ) 	 Bk(Σ) descends to a well-defined action on
the quotient Hg .

Proof

• Aim: ker(Bk(Σ)� Hg ) is preserved by the Map(Σ)-action.

• This is 〈〈 [σ1, x ] 〉〉, so it is enough to show that σ1 is fixed by the
Map(Σ)-action.

• Let [ϕ] ∈ Map(Σ) = Diff(Σ)/∼ be represented by a diffeo. ϕ
that fixes pointwise a collar neighbourhood of ∂Σ.

• The loop of configurations σ1 ∈ Bk(Σ) = π1(Ck(Σ)) can be
homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

1→ Z −→ Hg −→ H1(Σ;Z)→ 1

and the Map(Σ)-action on Hg lifts the natural action on H1(Σ;Z).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Rep. of MCGs – Heisenberg twisted coefficients

Lemma

The action Map(Σ) 	 Bk(Σ) descends to a well-defined action on
the quotient Hg .

Proof

• Aim: ker(Bk(Σ)� Hg ) is preserved by the Map(Σ)-action.

• This is 〈〈 [σ1, x ] 〉〉, so it is enough to show that σ1 is fixed by the
Map(Σ)-action.

• Let [ϕ] ∈ Map(Σ) = Diff(Σ)/∼ be represented by a diffeo. ϕ
that fixes pointwise a collar neighbourhood of ∂Σ.

• The loop of configurations σ1 ∈ Bk(Σ) = π1(Ck(Σ)) can be
homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

1→ Z −→ Hg −→ H1(Σ;Z)→ 1

and the Map(Σ)-action on Hg lifts the natural action on H1(Σ;Z).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Rep. of MCGs – Heisenberg twisted coefficients

Lemma

The action Map(Σ) 	 Bk(Σ) descends to a well-defined action on
the quotient Hg .

Proof

• Aim: ker(Bk(Σ)� Hg ) is preserved by the Map(Σ)-action.

• This is 〈〈 [σ1, x ] 〉〉, so it is enough to show that σ1 is fixed by the
Map(Σ)-action.

• Let [ϕ] ∈ Map(Σ) = Diff(Σ)/∼ be represented by a diffeo. ϕ
that fixes pointwise a collar neighbourhood of ∂Σ.

• The loop of configurations σ1 ∈ Bk(Σ) = π1(Ck(Σ)) can be
homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

1→ Z −→ Hg −→ H1(Σ;Z)→ 1

and the Map(Σ)-action on Hg lifts the natural action on H1(Σ;Z).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Rep. of MCGs – Heisenberg twisted coefficients

Lemma

The action Map(Σ) 	 Bk(Σ) descends to a well-defined action on
the quotient Hg .

Proof

• Aim: ker(Bk(Σ)� Hg ) is preserved by the Map(Σ)-action.

• This is 〈〈 [σ1, x ] 〉〉, so it is enough to show that σ1 is fixed by the
Map(Σ)-action.

• Let [ϕ] ∈ Map(Σ) = Diff(Σ)/∼ be represented by a diffeo. ϕ
that fixes pointwise a collar neighbourhood of ∂Σ.

• The loop of configurations σ1 ∈ Bk(Σ) = π1(Ck(Σ)) can be
homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

1→ Z −→ Hg −→ H1(Σ;Z)→ 1

and the Map(Σ)-action on Hg lifts the natural action on H1(Σ;Z).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Rep. of MCGs – Heisenberg twisted coefficients

Lemma

The action Map(Σ) 	 Bk(Σ) descends to a well-defined action on
the quotient Hg .

Proof

• Aim: ker(Bk(Σ)� Hg ) is preserved by the Map(Σ)-action.

• This is 〈〈 [σ1, x ] 〉〉, so it is enough to show that σ1 is fixed by the
Map(Σ)-action.

• Let [ϕ] ∈ Map(Σ) = Diff(Σ)/∼ be represented by a diffeo. ϕ
that fixes pointwise a collar neighbourhood of ∂Σ.

• The loop of configurations σ1 ∈ Bk(Σ) = π1(Ck(Σ)) can be
homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

1→ Z −→ Hg −→ H1(Σ;Z)→ 1

and the Map(Σ)-action on Hg lifts the natural action on H1(Σ;Z).



MCG repr’s
via Heisenberg

Aims

Repr of Bn

Repr of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Torelli

– Schrödinger

– tautological

Kernel

Summary

Rep. of MCGs – Heisenberg twisted coefficients

Corollary

We obtain a twisted representation, defined over Z[Hg ]:

Map(Σ) 	 HBM
k (Ck(Σ′);Z[Hg ]) = V

“Twisted representation” really means we have:

• a Z[Hg ]-module τV for each τ ∈ Aut+(Hg )

• isomorphisms τ◦ϕ∗V → τV for each ϕ ∈ Map(Σ), τ ∈ Aut+(Hg )

(where ϕ∗ ∈ Aut+(Hg ) is the action of ϕ on Hg )

In other words a functor Ac(Map(Σ) 	 Hg ) −→ ModZ[Hg ].

(where Ac(Map(Σ) 	 Hg ) is the action groupoid)

Note

Replace the coefficients Z[Hg ] with any Hg -representation W over R
to get a twisted Map(Σ)-representation V(W ) over R.
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Problem

How to untwist this representation?

Three methods:

(1) On the Torelli group Tor(Σ) ⊂ Map(Σ)
for any Hg -representation W .

(2) On the (stably) universal central extension of Map(Σ)
for W = WSch the Schrödinger representation of Hg .

(3) Directly on the mapping class group Map(Σ)
for W = Wlin the linearised tautological representation of Hg .
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Rep. of MCGs – restricting to the Torelli group

Proposition

The pre-image of Inn(Hg ) ⊂ Aut(Hg ) under α : Map(Σ)→ Aut(Hg ) is
the Torelli group.

We obtain a central extension of the Torelli group:

Z Z

T̃or(Σ) Hg

Tor(Σ) Inn(Hg )

α̃

α

The twisted representation provides τ◦ϕ∗V → τV for ϕ ∈ Tor(Σ).

Given a lift ϕ̃ to T̃or(Σ), the element α̃(ϕ̃) provides τV → τ◦ϕ∗V.

Lemma

The central extension T̃or(Σ) of Tor(Σ) turns out to be trivial.
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Definition (Schrödinger representation)

Hg
∼= Z〈σ, a1, · · · , ag 〉o Z〈b1, . . . , bg 〉 (bi · ai = ai + 2σ)

HRe
g
∼= R〈σ, a1, · · · , ag 〉oR〈b1, . . . , bg 〉

One-dimensional repr. R〈σ, a1, · · · , ag 〉� R〈σ〉 → S1 = U(1)
given by t 7→ exp(~ti/2) for fixed ~ > 0

Induction  unitary representation

Hg ⊂ HRe
g −→ U(WSch) WSch = L2(Rg )

Theorem ((corollary of) Stone-von Neumann)

For ϕ ∈ Aut(HRe
g ) there is a unique inner automorphism T (ϕ) of

U(WSch) such that the following square commutes:

HRe
g U(WSch)

HRe
g U(WSch)

ϕ T (ϕ)
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Theorem ((corollary of) Stone-von Neumann)

For ϕ ∈ Aut(HRe
g ) there is a unique inner automorphism T (ϕ) of

U(WSch) such that the following square commutes:

HRe
g U(WSch)

HRe
g U(WSch)

ϕ T (ϕ)

Since Inn(U(WSch)) = PU(WSch), we obtain

M̃ap(Σ)univ U(WSch)

Map(Σ) Aut+(Hg ) ⊂ Aut+(HRe
g ) PU(WSch)

α̃

α T

and α̃ allows us to untwist the representation:

M̃ap(Σ)univ −→ U
(
HBM

k (Ck(Σ′);WSch)
)

= U(V(WSch))
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Rep. of MCGs – untwisting via tautological Hg -rep

Hg = Z2g+1 = Z× H1(Σ) with (k, x)(l , y) = (k + l + x .y , x + y)

Give Z2g+1 its usual affine structure (a torsor over itself)

Obs1: Left multiplication Hg 	 Hg preserves the affine structure.

Tautlin : Hg −→ Aff(Z2g+1) ⊂ GL(Wlin) Wlin = Z2g+1 ⊕ Z

Obs2: Every (orientation-preserving) automorphism of Hg preserves
the structure of Z2g+1 as a free Z-module.

Lemma

This untwists the representation with coefficients in Wlin:

Map(Σ) −→ GL
(
HBM

k (Ck(Σ′);Wlin)
)

= GL(V(Wlin))
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Upper bound on the kernel

Summary

For k ≥ 2 and W = Hg -representation over R, we obtain:

• a Tor(Σ)-representation V(W ) over R;

• a unitary M̃ap(Σ)univ-representation V(W ) if W = WSch;

• a Map(Σ)-representation V(W ) over Z if W = Wlin.

Lemma

As an R-module, V(W ) ∼=
⊕

(k+2g−1
k )

W .

For example, V(Wlin) is a free Z-module of rank (2g + 2)
(
k+2g−1

k

)
.

Q: What is the kernel of this representation?
Q′: Is it smaller than J(k) = ker(Moriyamak)?
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(k = 2)

Quotient of (twisted) Map(Σ)-representations:

HBM
2 (C2(Σ′);Z[Hg ]) −� HBM

2 (C2(Σ′);Z[S2])

induced by Hg −� (Hg )ab = Z/2⊕ H1(Σ) −� Z/2 = S2.

• The right-hand side is HBM
2 (F2(Σ′);Z) = Moriyama2, hence

ker
(
HBM

2 (C2(Σ′);Z[Hg ])
)
⊆ J(2)

• Let γ ⊂ Σ be a simple closed curve that separates off a genus-1
subsurface. Then the Dehn twist Tγ lies in J(2).

• Calculations ⇒ Tγ acts non-trivially in our representation.

Corollary

The kernel of HBM
2 (C2(Σ′);Z[Hg ]) is strictly smaller than J(2).
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Example calculation

Set k = 2 and g = 1. In this case the representation

HBM
2 (C2(Σ′);Z[H1])

is free of rank 3 over Z[H1] = Z[σ±1]〈a±1, b±1〉/(ab = σ2ba)

Let γ be a curve isotopic to ∂Σ = ∂Σ1,1. Then Tγ acts via:



σ−8b2+σ−4a−2−σa−2b2+(σ−1−σ−2)a−2b+

(σ−3−σ−4)a−1b2+(σ−4−σ−5)a−1b

(σ2+1−2σ−1+σ−2+σ−4)a−2b2−σa−2b4+

(−σ2+σ+σ−1−σ−2)a−2b3−σ−3a−2+

(−1+σ−1+σ−3−σ−4)a−2b

(−1+2σ−1−σ−2−σ−4+σ−5)a−2b+(σ−1)a−2b3+

(σ2−σ−σ−1+2σ−2−σ−3)a−2b2+(−σ−3+σ−4)a−1b+

(σ−4−σ−5)a−1b3+(−σ−2+σ−3+σ−5−σ−6)a−1b2+(−σ−3+σ−4)a−2

−σ−1−σ−3+2σ−4−σ−5−σ−7+σ−2a2+
(σ−1−σ−2−σ−4+σ−5)a+σ−6a−2+

(σ−3−σ−4−σ−6+σ−7)a−1

1+σ−2−σ−3+σ−6+σ−6a−2b2−σ−1b2+
(σ−3−σ−4)a−1b2+(−1+σ−1+σ−3−σ−4)b+

(σ−2−2σ−3+σ−4+σ−6−σ−7)a−1b−σ−5a−2+

(−σ−2+σ−3+σ−5−σ−6)a−1+(σ−5−σ−6)a−2b

(−σ−6+σ−7)a−2b+(σ−1−σ−2−σ−4+2σ−5−σ−6)b+

(−σ−3+2σ−4−σ−5−σ−7+σ−8)a−1b+1−σ−1+σ−2−
3σ−3+2σ−4+σ−6−σ−7+(−σ−2+2σ−3−σ−4+σ−5−2σ−6+σ−7)a−1

+(σ−2−σ−3)ab+(−1+σ−1+σ−3−σ−4)a+(−σ−5+σ−6)a−2

−σ−6ab+(−σ−3+σ−4−σ−7)b−σ−4+

(σ−1−σ−4+σ−5)a−1b+σ−2a−2b+

(−σ−3+σ−6)a−1+σ−5a−2

(−1−σ−2+2σ−3−σ−6)a−1b+σ−1a−1b3+

σ−2a−2b3+(1−σ−1−σ−3+σ−4)a−1b2+

(σ−1−σ−2+σ−5)a−2b2+(−σ−1+σ−4−σ−5)a−2b+

(σ−2−σ−5)a−1−σ−4a−2

σ−3+(σ−2−σ−3−σ−5+σ−6)a−1+

(−σ−1+σ−2−σ−5+σ−6)a−1b2+(−σ−2+σ−3)a−2b2+

(−1+σ−1+2σ−3−3σ−4+σ−7)a−1b+

(−σ−1+σ−2−σ−5+σ−6)a−2b+(−σ−4+σ−5)b2+

(σ−2−σ−3−σ−5+σ−6)b+(−σ−4+σ−5)a−2



Exercise: this reduces to the identity if we set a = b = σ2 = 1.
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σ−8b2+σ−4a−2−σa−2b2+(σ−1−σ−2)a−2b+

(σ−3−σ−4)a−1b2+(σ−4−σ−5)a−1b

(σ2+1−2σ−1+σ−2+σ−4)a−2b2−σa−2b4+

(−σ2+σ+σ−1−σ−2)a−2b3−σ−3a−2+

(−1+σ−1+σ−3−σ−4)a−2b

(−1+2σ−1−σ−2−σ−4+σ−5)a−2b+(σ−1)a−2b3+

(σ2−σ−σ−1+2σ−2−σ−3)a−2b2+(−σ−3+σ−4)a−1b+

(σ−4−σ−5)a−1b3+(−σ−2+σ−3+σ−5−σ−6)a−1b2+(−σ−3+σ−4)a−2

−σ−1−σ−3+2σ−4−σ−5−σ−7+σ−2a2+
(σ−1−σ−2−σ−4+σ−5)a+σ−6a−2+

(σ−3−σ−4−σ−6+σ−7)a−1

1+σ−2−σ−3+σ−6+σ−6a−2b2−σ−1b2+
(σ−3−σ−4)a−1b2+(−1+σ−1+σ−3−σ−4)b+

(σ−2−2σ−3+σ−4+σ−6−σ−7)a−1b−σ−5a−2+

(−σ−2+σ−3+σ−5−σ−6)a−1+(σ−5−σ−6)a−2b

(−σ−6+σ−7)a−2b+(σ−1−σ−2−σ−4+2σ−5−σ−6)b+

(−σ−3+2σ−4−σ−5−σ−7+σ−8)a−1b+1−σ−1+σ−2−
3σ−3+2σ−4+σ−6−σ−7+(−σ−2+2σ−3−σ−4+σ−5−2σ−6+σ−7)a−1

+(σ−2−σ−3)ab+(−1+σ−1+σ−3−σ−4)a+(−σ−5+σ−6)a−2

−σ−6ab+(−σ−3+σ−4−σ−7)b−σ−4+

(σ−1−σ−4+σ−5)a−1b+σ−2a−2b+

(−σ−3+σ−6)a−1+σ−5a−2

(−1−σ−2+2σ−3−σ−6)a−1b+σ−1a−1b3+

σ−2a−2b3+(1−σ−1−σ−3+σ−4)a−1b2+

(σ−1−σ−2+σ−5)a−2b2+(−σ−1+σ−4−σ−5)a−2b+

(σ−2−σ−5)a−1−σ−4a−2

σ−3+(σ−2−σ−3−σ−5+σ−6)a−1+

(−σ−1+σ−2−σ−5+σ−6)a−1b2+(−σ−2+σ−3)a−2b2+

(−1+σ−1+2σ−3−3σ−4+σ−7)a−1b+

(−σ−1+σ−2−σ−5+σ−6)a−2b+(−σ−4+σ−5)b2+

(σ−2−σ−3−σ−5+σ−6)b+(−σ−4+σ−5)a−2



Exercise: this reduces to the identity if we set a = b = σ2 = 1.
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Summary and outlook

Bn: Lawrencek ∼=
⊕

fin Z[Z2] linearity

Map(Σg ,1): Moriyamak kernel = J(k)

twisted representations V(W ) ∼=
⊕

fin W

Tor(Σg ,1) M̃ap(Σg ,1)univ Map(Σg ,1)

u n t w i s t i n g

(any W ) (W = Schrödinger) (W = Tautlin)

kernel ⊆ J(k) (when W = Z[Hg ])

kernel ( J(2) (for k = 2)

Q: linearity? study V(W ) for well-chosen W

extensions to TQFTs?

Thank you for your attention!
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