

On the lower central series of partitioned surface braid groups

Martin Palmer-Anghel // Topology Seminar, IMAR // 20 January 2023

Abstract.

Every group G has a natural descending filtration that measures its failure to be abelian: its *lower central series* $\Gamma_*(G)$. Understanding this filtration and its associated Lie algebra $\mathfrak{L}_*(G)$ can give deep information about the underlying structure of G . The most fundamental question to ask about this filtration is whether it *stops*, i.e. whether there is some i such that $\Gamma_i(G) = \Gamma_{i+n}(G)$ for all $n \geq 0$.

I will describe the answer to this question for *partitioned surface braid groups* $G = \mathbf{B}_\lambda(S)$ for any surface S and any partition λ of a positive integer n . The answer depends very subtly on the sizes of the blocks of λ and on the topology of S , with the two most difficult cases being the 2-sphere and the projective plane.

Based on joint work with Jacques Darné and Arthur Soulié (Memoirs of the AMS, 2023, to appear; see also [arxiv:2201.03542](https://arxiv.org/abs/2201.03542))