

Do the dual Miller-Morita-Mumford classes vanish in the homology of the big mapping class group?

Martin Palmer-Anghel // Algebra seminar, Leeds // 7 May 2024

Abstract.

The Mumford conjecture – a consequence of the Madsen-Weiss theorem – describes the rational homology of the mapping class groups $\text{Mod}(\Sigma_{g,1})$ in the limit as $g \rightarrow \infty$, in terms of the dual Miller-Morita-Mumford (MMM) classes. Instead of taking the colimit of the mapping class groups, one may instead take the colimit of the surfaces $\Sigma_{g,1}$ themselves, to obtain an infinite-type surface Σ_∞ , and consider its mapping class group $\text{Mod}(\Sigma_\infty)$, called the “big mapping class group”. The structure of its homology is very mysterious, and very large: it is uncountably generated in every positive degree.

There is a natural homomorphism from the colimit of $\text{Mod}(\Sigma_{g,1})$ to $\text{Mod}(\Sigma_\infty)$, and one may wonder what its effect is on homology; in particular whether the dual MMM classes vanish on $\text{Mod}(\Sigma_\infty)$. This is a special case of a more general question for any infinite-type surface S : does its mapping class group $\text{Mod}(S)$ admit non-zero homology classes supported on a compact subsurface of S ? We will give a complete answer to this question when S has non-zero genus (including the case $S = \Sigma_\infty$) and a partial answer when S has genus zero.

This represents joint work with Xiaolei Wu.