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Disclaimer: This is a small selection of mathematical domains in which homological stability is important.
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o Foliations of 3-manifolds
Typical leaf = £
¢ Dynamical systems on ¥

Complement of attractor = ¥ ~ C
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(calculations in degree d = 1 due to Calegari-Chen, Vlamis, Domat)
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Theorem (P.-Wu 2024): f, induces isomorphisms on Hy when n > 2d
Observation: fi, , f3, ... are all isomorphic
Corollary: f; induces isomorphisms on Hy in all degrees

Infinite iteration argument ~
= H,(Mapy(D? . C)) =
Corollary (Map,(D*~.C))

Central extension 1 — Z — Mapy(D? \. C) — Map(R>2~\.C) — 1

+ Serre spectral sequence argument => H,(Map(R2 . C))
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Embeddings into acyclic groups

A group G is acyclic if its reduced homology vanishes: /jl*(G) =0
Example: Map(D? \ C) is acyclic

Theorem (Kan-Thurston 1976):

Every countable group embeds into an acyclic countable group.

Consequences:

¢ Theorem (Kan-Thurston 1976):
Every connected space has the homology of a group
V connected space X I group G s.t. H.(X) = H.(G)

o Short algebraic proof of Atiyah's L2-index theorem
(Chatterji-Mislin 2003)
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3
3
o
o (P.-Wu '25): v for P = type F, for each n > 1 9
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Embedding G — V(G):
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—
Construction of V(G):
9
Elements: \_&
EN =
. 3

o Equivalence classes of:

< Two finite binary rooted trees

g @— -

© Bijection between their leaves

R
!

labelled by elements of G
o Equivalence relation generated by:
o Splitting strands into two

Multiplication:

(1) Expand until middle trees agree
(2) Delete middle trees
(3) Compose bijections 4+ multiply labels

EmbeddingG%V(G):[ g > g ]
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Conjecture (P. Wu) NN
H.(bVy) = (Qohoﬁb(S2 52) é@

In particular, bV, is acyclic
‘\/
L
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