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Goal: Explain three recent applications of homological stability to:

Physics

⋄ Asymptotic magnetic monopoles

Low-dimensional topology

⋄ Infinite-type surfaces

Group theory

⋄ Thompson-like groups

. . . with applications to finiteness properties of groups
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Disclaimer: This is a small selection of mathematical domains in which homological stability is important.
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Magnetic monopoles — Maxwell’s equations

Maxwell’s equations of electromagnetism (1865)

Formulation of Heaviside (1884)

Extended version,

allowing non-zero

magnetic charges.

Symmetric under rotation in the electric-magnetic plane:

Dirac (1931):

⋄ ∃ magnetic monopole ⇒
quantisation of electric charges

⋄ Constructed singular solutions

with magnetic monopoles

(defined on R3 minus a ray going

from the monopole to infinity)
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Magnetic monopoles — BPS monopoles

’t Hooft-Polyakov + Prasad-Sommerfield + Bogomolny (1974-6):

⋄ BPS monopoles

⋄ Alternative formulation in terms of Bogomolny equations

⋄ At large distances they behave like Dirac monopoles

(i.e. Dirac’s singular solutions to Maxwell’s equations with magnetic monopoles)

M = moduli space of BPS monopoles =
⊔
k⩾1

Mk k = total charge

Mk is a (non-compact) 4k-dimensional hyperKähler manifold

M1
∼= S1 × R3 M2 studied by Atiyah-Hitchin (1988)

Theorem (Donaldson 1984, Boyer-Mann 1988):

Mk
∼= {based rational maps CP1 → CP1 of degree k}

Theorem (Segal 1979):

Hd(Mk) is independent of k when k ⩾ d Homological stability!

Theorem (Cohen-Cohen-Mann-Milgram 1991):

Hd(Mk) ∼= Hd(B2k) (B2k = braid group on 2k strands)
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Magnetic monopoles — asymptotic monopoles

Kottke-Singer (2022):

⋄ Partial compactificationMk ofMk

(codimension-1 faces of a full compactification [Fritzsch-Kottke-Singer])

⋄ Boundary strataMλ ←→ non-trivial partitions λ of k

←→ asymptotic monopoles (widely separated clusters)

Built out of entangled

configuration spaces

Theorem (P.-Tillmann 2023): For any fixed charge c ⩾ 1,

Hd(Mλ[k]) is independent of k when k ⩾ 2d λ[k] = (λ,

k︷ ︸︸ ︷
c, . . . , c)

Work in progress: Calculation of the stable homology lim
k→∞

Hd(Mλ[k])
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Infinite-type surfaces

Theorem (Kerékjártó 1923 / Richards 1963):

Connected, orientable surfaces S are classified by:

⋄ g(S) genus

⋄ E(S) space of ends

⋄ Enp(S) subspace of non-planar ends

“infinite type” ⇔ |E(S)| or g(S) is infinite
⇔ π1(S) is not fin. gen.

Infinite type surfaces arise from:

⋄ Foliations of 3-manifolds

Typical leaf ∼= L
⋄ Dynamical systems on Σ

Complement of attractor ∼= Σ∖ C

5
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Infinite-type surfaces — mapping class groups

Mapping class group: Map(S) = π0(Homeo+(S))

Finite type surfaces: The homology groups Hd(Map(S)) are known for:

⋄ g(S) = 0 [Arnol’d, Cohen, Fuchs, ’70s] ←→ (ribbon) braid groups

⋄ g(S) ⩾ 3d+2
2 [Harer ’85 + Madsen-Weiss ’07] ←→ Mumford conjecture

⋄ some other sporadic calculations for small genus (g(S) ⩽ 5)

Infinite type surfaces:

Theorem (P.-Wu 2024):

(A) Hd(Map(R2 ∖ C)) ∼=

{
Z d even

0 d odd

(B) For each d ⩾ 1, Hd(Map(L)) contains
⊕

continuum

Z

(calculations in degree d = 1 due to Calegari-Chen, Vlamis, Domat)

6
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Infinite-type surfaces — proof of Theorem (A)

Theorem (P.-Wu 2024): fn induces isomorphisms on Hd when n ⩾ 2d

Observation: f1, f2, f3, . . . are all isomorphic

Corollary: f1 induces isomorphisms on Hd in all degrees

Infinite iteration argument

Corollary

}
=⇒ H̃∗(Map∂(D2 ∖ C)) = 0

Central extension 1→ Z→ Map∂(D2 ∖ C)→ Map(R2 ∖ C)→ 1

+ Serre spectral sequence argument =⇒

7Hd(Map(R2 ∖ C)) ∼=

{
Z d even

0 d odd
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Embeddings into acyclic groups

A group G is acyclic if its reduced homology vanishes: H̃∗(G ) = 0

Example: Map(D2 ∖ C) is acyclic

Theorem (Kan-Thurston 1976):

Every group embeds into an acyclic group.

Consequences:

⋄ Theorem (Kan-Thurston 1976):

Every connected space has the homology of a group

∀ connected space X ∃ group G s.t. H∗(X ) ∼= H∗(G )

⋄ Short algebraic proof of Atiyah’s L2-index theorem

(Chatterji-Mislin 2003)
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Embeddings into acyclic groups — finiteness properties

A group G is of type Fn if there exists a K (G , 1) with finite n-skeleton

K (G , 1): space with π1
∼= G and πd = 0 for all d ⩾ 2

Example: type F1 ⇔ finitely generated type F2 ⇔ finitely presented

Groups of intermediate type

Observation: type Fn ⇒ type Fn−1

Thm (Stallings ’63, Bieri ’76): ∃ group of type Fn−1 ∖ Fn (“Fn−1 but not Fn”)

Thm (Skipper-Witzel-Zaremsky ’17): ∃ simple group of type Fn−1 ∖ Fn

Thm (P.-Wu ’25): ∃ acyclic group of type Fn−1 ∖ Fn

Embeddings into acyclic groups

Ansatz: Every group of type P embeds into an acyclic group of type P.

⋄ (Kan-Thurston ’76): ✓ for P = ∅ and P = countable

⋄ (Baumslag-Dyer-Heller ’80): ✓ for P = finitely generated = type F1

⋄ (Baumslag-Dyer-Miller ’83): ✓ for P = finitely presented = type F2

⋄ (P.-Wu ’25): ✓ for P = type Fn for each n ⩾ 1

9
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∼= G and πd = 0 for all d ⩾ 2

Example: type F1 ⇔ finitely generated type F2 ⇔ finitely presented

Groups of intermediate type

Observation: type Fn ⇒ type Fn−1

Thm (Stallings ’63, Bieri ’76): ∃ group of type Fn−1 ∖ Fn (“Fn−1 but not Fn”)
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Embeddings into acyclic groups — Thompson groups

Construction:

G group 7−→ G ↪→ V(G ) embedding of groups

V = V({e}) is the Thompson group (R. Thompson 1965)

V(G ) is a labelled Thompson group

History

Theorem (Brown 1992): V has trivial rational homology

Theorem (Szymik-Wahl 2019): V is acyclic (trivial integral homology)

Methods: homological stability + algebraic K-theory

Theorem (P.-Wu 2025): V(G ) is acyclic for any group G

Methods: étale groupoids, via a theorem of X. Li (2022)

. . . which itself uses homological stability
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Embeddings into acyclic groups — Thompson groups II

Construction of V(G ):

Elements:

⋄ Equivalence classes of:

⋄ Two finite binary rooted trees

⋄ Bijection between their leaves

labelled by elements of G

⋄ Equivalence relation generated by:

⋄ Splitting strands into two

Multiplication:

(1) Expand until middle trees agree

(2) Delete middle trees

(3) Compose bijections + multiply labels

Embedding G ↪→ V(G ):

11
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Embeddings into acyclic groups — Thompson groups III

Work in progress

⋄ (Higman 1974): Replace binary trees with d-ary trees (fix d ⩾ 2)

⇝ Vd(G ) labelled Higman-Thompson groups

Theorem (Szymik-Wahl ’19): H∗(Vd) ∼= H∗(Ω
∞
0 M(Zd−1))

M(Zd−1) = Moore spectrum of Zd−1

Conjecture (P.-Wu):

H∗(Vd(G )) ∼= H∗(Ω
∞
0 hocofib(Σ∞BG+

d−1−−→ Σ∞BG+))

⋄ (Brin 2007, Dehornoy 2006): Replace bijections with braids

⇝ bVd braided Higman-Thompson groups

bVd embeds into Map(S2 ∖ C)
Conjecture (P.-Wu):

H∗(bVd) ∼= H∗(Ω0hofib(S
2 d−1−−→ S2))

In particular, bV2 is acyclic
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Thanks for listening!

Thanks for listening!
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