

Let $\widehat{G} = \{M \in GL_n(\mathbb{Z}) \mid M \text{ is upper triangular}\}$. The main diagonal of any matrix of this form must consist entirely of 1's and -1 's, so there is a surjection $\phi: \widehat{G} \twoheadrightarrow \{\pm 1\}^n \cong (\mathbb{Z}/2)^n$ given by forgetting everything except the diagonal. The kernel G is the subgroup of unitriangular matrices over \mathbb{Z} . There is an obvious section of ϕ , so \widehat{G} splits as a semi-direct product: $\widehat{G} = G \rtimes (\mathbb{Z}/2)^n$.

Now define:

$$\Upsilon = \{r = (r_1, r_2, r_3, \dots) \mid r_i \in \mathbb{Z}, r_i \geq 0, \text{ each } r_i \text{ divides } r_{i-1}\}.$$

This set has an operation $\Upsilon \times \Upsilon \rightarrow \Upsilon$ defined by $(r, s) \mapsto r \oplus s = t$, where we set $t_1 = 0$ and $t_i = \gcd(\{r_j s_k \mid j+k=i\})$ for $i \geq 2$. This turns Υ into an abelian semigroup. There is also a partial order on Υ , defined by $r \lessdot s$ if and only if r_i divides s_i for all $i \geq 1$. There is a smallest element $\langle 1 \rangle = (1, 1, 1, \dots)$ for this partial order and a largest element $\langle \infty \rangle = (0, 0, 0, \dots)$. In general, we write $\langle k \rangle = (0, 0, \dots, 0, 1, 1, \dots) \in \Upsilon$, where there are $k-1$ zeros, for $k \in \{1, 2, 3, \dots, \infty\}$. Note that $\langle k \rangle \oplus \langle l \rangle = \langle k+l \rangle$. Any two elements of Υ have a unique infimum and supremum (which we write as \min and \max respectively), so (Υ, \lessdot) is a bounded lattice. The structures \oplus and \lessdot on Υ are compatible in the sense that $r \lessdot s$ implies that $r \oplus t \lessdot s \oplus t$ and $t \oplus r \lessdot t \oplus s$. Hence $(\Upsilon, \oplus, \lessdot)$ is a so-called *abelian posemigroup*. We also note that $\langle k \rangle \oplus r = (0, \dots, 0, r_1, r_2, \dots) \succ r$ and $r \oplus r \succ r$.

For $k \geq 0$ let U_k be the set of $(n \times n)$ -matrices $\{a_{ij}\}$ where $a_{ij} = 0$ if $j < i+k$. So U_0 is the set of upper triangular matrices (which are not necessarily invertible) and $U_k = \{0\}$ for $k \geq n$. For $r \in \Upsilon$ define

$$U_r = \{r_1 A_1 + r_2 A_2 + \dots + r_{n-1} A_{n-1} \mid A_k \in U_k\},$$

so $U_k = U_{\langle k \rangle}$. The key properties of this definition (not too hard to check) are that for any $r, s \in \Upsilon$,

$$X \in U_r \text{ and } Y \in U_s \Rightarrow X + Y \in U_{\min(r, s)} \text{ and } XY \in U_{r \oplus s}, \quad (1)$$

$$r \lessdot s \text{ in } \Upsilon \Leftrightarrow U_r \supseteq U_s. \quad (2)$$

In particular, every U_r is contained in $U_{\langle 1 \rangle}$, which is the set of strictly upper triangular matrices. Next, we define

$$H_r = \{I + A \mid A \in U_r\} \subseteq \widehat{G}.$$

It's not too hard to see that H_r is a subgroup of \widehat{G} . There are generating sets for H_r and for \widehat{G} as follows. Let $E_{i,j}$ be the matrix whose entries are all 0 except for the (i,j) -th one, which is 1. Let J_i be the diagonal matrix whose diagonal entries are all 1, except for the (i,i) -th one, which is -1 . Then H_r is generated by the set

$$\{I + r_k E_{i,i+k} \mid k \in \{1, \dots, n-1\} \text{ and } i \in \{1, \dots, n-k\}\}$$

and \widehat{G} is generated by the set

$$\{I + E_{i,j} \mid i, j \in \{1, \dots, n\}, i < j\} \cup \{J_i \mid i \in \{1, \dots, n\}\}.$$

Some useful commutator identities that these basic matrices satisfy are as follows. For $i < j$ and $k < l$ we have:

$$\begin{aligned} [I + rE_{i,j}, I + sE_{k,l}] &= \begin{cases} I & j \neq k \text{ and } i \neq l \\ I + rsE_{i,l} & j = k \\ I - rsE_{k,j} & i = l \end{cases} \\ [I + E_{i,j}, J_k] &= \begin{cases} I & i, j, k \text{ pairwise distinct} \\ I + 2E_{i,j} & k = i \text{ or } k = j \end{cases} \end{aligned} \quad (3)$$

and $[J_i, J_j] = I$ for any i, j .

Now, for any $(n \times n)$ -matrix X , if X is nilpotent, i.e. $X^\ell = 0$ for some ℓ , then $I + X$ is invertible and we define $\bar{X} = (I + X)^{-1}$. This satisfies the relation $\bar{X} = I - X\bar{X}$, and hence $X - X\bar{X} - X\bar{X}X = 0$. Using this, we see that, for any matrix Y ,

$$(I + X)(I + Y)(I + X)^{-1} = I + Y + XY - YX\bar{X} - XYX\bar{X}.$$

A corollary of this is that, for any $r \in \Upsilon$, the subgroup $H_r \leq \widehat{G}$ is *normal*. To see this, let D be a diagonal matrix with all diagonal entries ± 1 , let $X \in U_{\langle 1 \rangle}$ and let $Y \in U_r$. We need to show that

$$D(I + X)(I + Y)(I + X)^{-1}D^{-1}$$

is of the form $I + Z$ for some $Z \in U_r$. Since X and Y are strictly upper triangular, they are nilpotent, so we may apply the equation above to see that this is equal to

$$I + D(Y + XY - YX\bar{X} - XYX\bar{X})D^{-1}.$$

Conjugating a matrix by D only changes the signs of some of the entries, so it has no effect on whether the matrix is contained in U_r or not. So we can ignore this, and we just need to show that $Y + XY - YX\bar{X} - XYX\bar{X}$ is in U_r . Obviously $Y \in U_r$, by assumption. By property (1), $XY \in U_{\langle 1 \rangle \oplus r}$, which is contained in U_r by property (2), since $\langle 1 \rangle \oplus r > r$. The matrix \bar{X} is upper triangular, and X is strictly upper triangular, so their product is also strictly upper triangular, i.e. $X\bar{X} \in U_{\langle 1 \rangle}$. So by properties (1) and (2), $YX\bar{X} \in U_{\langle 1 \rangle \oplus r} \subseteq U_r$ and $XYX\bar{X} \in U_{\langle 2 \rangle \oplus r} \subseteq U_r$. Finally, by property (1) again, the sum $Y + XY - YX\bar{X} - XYX\bar{X}$ is in U_r , which completes the proof that H_r is normal in \widehat{G} .

In general, suppose that Γ is a group, $S \subseteq \Gamma$ is a generating set for Γ and $N \triangleleft \Gamma$ is a normal subgroup, such that $[s, t] \in N$ for all $s, t \in S$. Then $[\Gamma, \Gamma] \leq N$. This can be proved using the following commutator identities, which hold for any x, y, z in any group:

$$\begin{aligned} [x, zy] &= [x, y](y^{-1}[x, z]y) & [x, y^{-1}] &= y[y, x]y^{-1} \\ [xz, y] &= (z^{-1}[x, y]z)[z, y] & [x^{-1}, y] &= x[y, x]x^{-1} \end{aligned}$$

Now we apply this fact, with $\Gamma = \widehat{G}$, with the generating set described above, and $N = H_{(2,1,1,\dots)}$. Using the commutator identities (3), we see that every commutator $[s, t]$, with s and t in the generating set for \widehat{G} , lies in the normal subgroup $H_{(2,1,1,\dots)}$. Thus, from the previous paragraph, we deduce that $[\widehat{G}, \widehat{G}] \leq H_{(2,1,1,\dots)}$. On the other hand, the commutator identities (3) also show that every generator of $H_{(2,1,1,\dots)}$ can be written as a commutator of elements of \widehat{G} . Thus we have:

$$[\widehat{G}, \widehat{G}] = H_{(2,1,1,\dots)}. \quad (4)$$

Now fix any element $r \in \Upsilon$ and set $\Gamma = H_r$, with its generating set described above. Since $r \oplus r > r$ we have $H_{r \oplus r} \leq H_r \leq \widehat{G}$. Since $H_{r \oplus r}$ is normal in \widehat{G} , it is also normal in H_r , so we may take $N = H_{r \oplus r}$. Using the commutator identities (3), as before, we can check that (a) every commutator $[s, t]$ of generators s and t of H_r is contained in $H_{r \oplus r}$, and conversely (b) every generator of $H_{r \oplus r}$ may be written as a commutator of elements of H_r . Thus we have:

$$[H_r, H_r] = H_{r \oplus r}. \quad (5)$$

Indeed, the operation $\oplus: \Upsilon \times \Upsilon \rightarrow \Upsilon$ was defined exactly in order to make this fact true, and more generally:

$$[H_r, H_s] = H_{r \oplus s}, \quad (6)$$

for any two elements $r, s \in \Upsilon$.

Let's define a sequence $[i]$ of elements of Υ by $[1] = (2, 1, 1, 1, \dots)$ and $[i+1] = [i] \oplus [i]$ for $i \geq 1$. Then:

$$[i+1] = (0, 0, \dots, 0, 0, 2^{2^i}, 2^{2^i-1}, 2^{2^i-2}, \dots, 4, 2, 1, 1, 1, \dots),$$

where there are $2^i - 1$ zeros. Facts (4) and (5) imply inductively that:

$$\widehat{G}^{(i)} = H_{[i]},$$

so we have an explicit description of the derived series of \widehat{G} . Note that $H_{[i]} = \{0\}$ if and only if $2^{i-1} \geq n$, so the derived length of \widehat{G} is $\lceil \log_2(n) \rceil + 1$.

For comparison, the derived series of the subgroup $G \leq \widehat{G}$ is $G^{(i)} = H_{\langle 2^i \rangle} \leq H_{[i]} = \widehat{G}^{(i)}$, see [here](#), and its derived length is exactly one less than the derived length of \widehat{G} .

Acknowledgement: *Thanks to Jonas Antor for pointing out to me (a) that my initial “solution” for the derived series of \widehat{G} was wrong – I had instead computed the derived series of its index- 2^n subgroup G , see also [here](#) – and moreover (b) fact (4) above.*