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Abstract

Our aim here is to showcase several techniques for studying the lower central series of a
group and, in particular, for determining whether or not it stops. We apply these techniques
to various groups related to braid groups, in particular Artin groups, surface braid groups,
groups of welded and virtual braids and partitioned versions of all of these groups.

Introduction

One of the most basic objects one needs to understand when studying the structure of a group G
is its lower central series G = I'1(G) D I3(G) D ---. Its behaviour varies greatly from one group
to another. For instance, if G is perfect, its lower central series is completely trivial. Conversely, if
G is nilpotent, or residually nilpotent (e.g. if G is a free group), I'.(G) contains deep information
about the structure of G. The lower central series is also deeply connected to the structure of the
group ring of G. In particular, Quillen [Qui68] proved that if we consider the filtration of the group
ring QG by the powers of its augmentation ideal, then the associated graded algebra is isomorphic
to the universal enveloping algebra of the Lie algebra £(G) ® Q, where £(G) is the graded Lie ring
obtained from I, (G).

The amount of information one can hope to extract from the study of a lower central series depends
in the first place on whether or not it stops in the following sense:

Definition 0.1 The lower central series I',(G) of a group G is said to stop if there exists an integer
i > 1 such that I;(G) = I;41(G). We say that it stops at I if i is the smallest integer for which
this holds. Otherwise, we say the lower central series does not stop or else that it stops at co.

It follows from the definition of the lower central series that if I;(G) = I;41(G) for some i > 1,
then Iy, (G) = I't+1(G) for all k > 4, whence our choice of terminology.

Partitioned braid groups. In this paper, we study the lower central series of the following
families of groups, and their partitioned versions, in the sense described below:

The Artin braid group B,

The virtual braid group vB,,,

The welded braid group wB,,,

The extended welded braid group wB,,,

The group B, (S) of braids on any surface S.

Let G,, denote one of the above groups. In each case, there is a notion of the underlying permutation
of an element of G,,, corresponding to a canonical surjection 7: G,, - &,, to the symmetric group,
from which we can define partitioned versions of G,,. Let us first fix our conventions concerning
partitions of integers:
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Definition 0.2 Let n > 1 be an integer. A partition of n is an I-tuple A = (nq,...,n;) of integers
n; > 1, for some [ > 1 called the length of A, such that n is the sum of the n;. Given such a A,
for j <1, let us define ¢; := 3, n;, including o = 0. Then the set b;(A) := {t;—1 +1,...,¢;} is
referred to as the j-th block of A\, and n; is called the size of the i-th block.

For A = (ny,...,mn;) a partition of n, we consider the preimage
Gri=m &)\ =71 (G, x---xB,,),

which is called the A-partitioned version of G,,. There are two extremal situations: the trivial
partition A = (n) simply gives the group G,,, whereas the discrete partition A = (1,1,...,1)
corresponds to the subgroup of pure braids in G,,.

For all the families of groups described above, the lower central series of G, is quite trivial (in fact,
it stops at I» when n is at least 3 or 4), whereas the lower central series of the subgroup of pure
braids is a very complex object (in particular, it does not stop, when n is at least 2 or 3). We can
thus expect the partitioned braid groups G, to display a range of intermediate behaviours when
A varies, and this is indeed what we observe.

Methods. A fundamental tool in the study of lower central series is the graded Lie ring structure
on the associated graded L£(G) := @,5,13(G)/Ii+1(G). Namely, this is a graded abelian group
endowed with a Lie bracket induced by commutators in G. It is always generated, as a Lie algebra
over Z, by its degree one piece, which is the abelianisation G* = G//I',(G). This allows one to use
disjoint support arguments to show that the lower central series stops, when it does. Precisely, if one
can show that pairs of generators of G have commuting representatives in G, then, by definition
of the Lie bracket, they commute in £(G). In this case, £L(G) is abelian, and it is generated by
G?", which means that it is reduced to G*". In turn, that means that I;(G) = I;41(G) whenever
1 > 2. This kind of argument is used throughout the paper. In particular, one can apply it readily
to each of the G, above to show that its lower central series stops at I's whenever n is at least 3
or 4 (depending on the amount of space needed to have representatives with disjoint support for
pairs of generators of G&P).

One other main line of argumentation is given by looking for quotients whose lower central series
is well-understood. Namely, if we can find a quotient of G whose lower central series does not stop,
then neither does the lower central series of G; see Lemma 1.1. Typically, we look for a quotient
which is a semi-direct product of an abelian group with Z or Z/2, a free product of abelian groups
or a wreath product of an abelian group with some &), whose lower central series can be computed
completely; see §B.

Finally, a very important tool in our analysis is the study of the quotient by the residue. Precisely,
if we denote by I'n,(G) (abbreviated 5, when the context is clear) the intersection of the I;(G),
the lower central series of G is “the same” as the lower central series of G/I'w: each I3(G) is the
preimage of I;(G/I's) by the canonical projection, and this projection induces an isomorphism
between L£(G) and L(G/I's). In particular, one of I',(G) and I'.(G/I'x) stops if and only if the
other does, which happens exactly when G/, is nilpotent. Considering G/l instead of G can
lead to very important simplifications. Let us illustrate this by an example, variations of which
are used throughout the paper. We know that I, = I for B,,, and that I, contains the elements

o0 of B,. Thus whenever we have a morphism B,, — G, the subgroup I's(G) must contain

J
the image of I'n,(B,,), which contains the image of the O'z'O'j_l, so all the o; have the same image

in G/I'x.

Results. Does a given lower central series stop? We give a complete answer to this question for
all of the families of groups listed above, with the single exception of Bg ,,(P?) with m > 3 (see
Conjecture 6.71). In addition to these families of groups, we also give a complete answer for what
we call the tripartite welded braid groups wB(np,ns, ,ng), which are the fundamental groups of
the configuration spaces of np points, ng, oriented circles and ng unoriented circles in 3-space,
where all circles are unlinked and unknotted. This is a generalisation of both wB,, = wB(0,n,0)



and wB,, = wB(0,0,n). We define partitioned versions wB(Ap, As, ,As) of these groups in the
obvious way; see Definition 5.5.

We summarise our results in the three tables below:

e In the first one are gathered the stable cases, which are those where the blocks of the partitions
are large enough for the disjoint support argument described above to be applied readily.

e In the second one are gathered the cases where there are blocks in the partitions which are
too small for the disjoint support argument to be applied readily, but not too many of them,
so that the lower central series still stops.

e In the third one are gathered the cases where the lower central series does not stop.

Some of our results have already been obtained in the literature, with different methods. Namely,
the question of whether or not the lower central central series stops has already been studied:

e by Gorin and Lin [GL69] for B,, and Kohno [Koh85] for the pure braid group P,, =B; ;.

e by Bellingeri, Gervais and Guaschi [BGGO8] for B,,(S) where S is a compact, connected,
orientable surface with or without boundary.

e by Bellingeri and Gervais [BG16] for the pure surface braid group P,,(S) where S is a compact,
connected, non-orientable surface with or without boundary and different from the projective
plane P2

e by Gongalves and Guaschi [GG09a; GG09b] for B,,(S?) and B,,(S? — P) where P is a finite
set of points in S2.

e by Guaschi and de Miranda e Pereiro [GM20] for B,,(S) where S is a compact, connected,
non-orientable surface without boundary.

e by van Buskirk [Bus66] and by Gongalves and Guaschi [GG04a; GG11; GGOT7] both for the
braid group on the projective plane B, (P?).

e by Bardakov and Bellingeri [BB09a] for the virtual braid group vB,,.

The symbol () in front of a family of groups in the tables indicates that the result concerned is
already partly known in the literature quoted above.

In the following tables, A\ = (ny,...,n;) denotes a partition of n, of length [ > 1, and S denotes
any connected surface (not necessarily compact or orientable, and possibly with boundary).

The stable cases

Family of groups Partition Stops at I, | Ref. | Lie Alg.
Classical braids B n; =3 (1) k=2 3.5 (3.6) 3.4
S planar or S = §? n; = 3 (1) k=2 6.26
S ¢ S2, orientabl ;>3 k=3 6.4.3
Surface braids B (S) % 5%, orientable n () 6.30 3
. l=1,n >3 k=2 6.11
S non-orientable
1>2, n; >3 k=3 §6.4.3
Virtual braids vB
Welded braids wB ), n; =>4 k=2 4.22 4.21
Extended welded braids wB
. . . n,p =3
Tripartite welded braids wB(Ap, Ag, , As) ’ k=2 5.8 (5.9) 5.7
NS, N5 =4

In the following tables, 1 denotes a partition which is either empty or whose blocks have size at
least 3 for classical braids and surface braids, and at least 4 for virtual and welded braids, whereas
v denotes any partition (possibly empty, unless stated otherwise). Also, ve denotes the 2-adic
valuation and € is 0 or 1 (the precise value may depend on the case, and is unknown, although
we conjecture that it is always 1). Finally, we recall that | denotes total length of the partition A
under consideration.



The unstable cases for which the lower central series stops

Family of groups Partition Stops at [ Ref. Lie Alg.
. : (2) B, =7
Classical braids B k=2
(1,0), (1,1, p) 3.5 (3.8, 3.9) 3.4
S=D-pt (1, 1) -9 6.41 3.4
. 1) - B, (T?) = 22
(1,p), p# o -3 6.43 | 6.26 and 6.34
Surface braids B (S) S = M2 (1) = B, (M?) =7
(2) or (2,1) P By (S?) 2 7Z/2, B 1(S?) = Z/4
§ =5 (1,m), (1,1, ), (1,1,1, 1) 6.48 6.26
(2,m), m >3 kE=wvo(m)+1+e€ 6.51 -
(I,m), m >3 kE=wve(m)+2+e€ 6.57 -
- (1) k=2 B, (P?) = Z/2
(1,1) k= B11(P?) = Qs (6.59)
Virtual braids vB) 4.22 (4.26)
(1, 1) k=2 421
Welded braids wB, 4.22 (4.24)
(L, L pup), psy , ps) Lo 5.8 (5.10) 57
Tripartite welded braids wB(Ap, s, As) | ((1,...,1, up), (1, s, ), i) 5.8 (5.11, 5.12)
((2,vp), D, ps), s # @ k=3 5.8 (5.17) 5.7 and 5.17
The unstable cases for which the lower central series does not stop
Family of groups Partition Ref.
1,1,1 3.5 (3.7
Classical braids B (L1 Lv) (1) (3.7)
2,v),1>2 3.5 (3.11, 3.14, 3.17)
S¢ (DD pt, T2 M2, &, P} (L,v), (2,v) (1) 6.40
(1,1,v) 6.41
S=D-pt
(2,v) 6.40
g2 (1,1,v) 6.43
2, 6.43 (6.40
Surface braids B (.5) @) () (6.40)
o (1,v),1>2 6.40, 6.45, 6.46
(2,v) 6.40
G (1,1,1,1,) 6.48 (6.49)
(2,0), 1> 3 or (2,2) 6.48 (6.50, 6.53)
o p (1,v),1>3 6.56
2,v),1>3o0r (2,2) or (2,1 6.60, 6.68, 6.65
Virtual braids vB
T (L L,v), 2.v), (3,v)
Welded braids wB ), 4.22
Extended welded braids wB [(1,v) with v # @], (2,v), (3,v)
(VP7VS+7 (2,”5)), (VPaVS+7 (35VS))
(VP7(23VS+)aVS)a(VPa(?);VSJr)aVS) 5.8
Tripartite welded braids wB(Ap, As, , As) (vp,(1,1,vs,),vs)
(vp,vs,,(1,vs)), 1> 2 5.8 (5.13)
((2,vp),vs,,vs), Vs, # O 5.8 (5.14)
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In this section, we recall some classical notions and tools to study the lower central series of groups.
These will be used throughout the paper.



1.1 Commutator calculus and lower central series

Let G be a group. We recall that the lower central series of G is the descending sequence of normal
subgroups G = Il (G) D I3(G) 2 --- of G, also denoted by I',(G), defined by

n) = G ifi=1,
CTUUG, Lo (Q)] il =2,

where [G, I(G)] is the subgroup of G generated by all commutators [x,y] := zyz~ly~! with z in
G and y in I_1(G). The subgroups I;(G) are fully invariant, and in particular normal in G. As
a consequence, one can also think of the lower central series as an ascending chain of quotients
G/I;(G) of G. We recall that the abelianisation G® of G is the first of these quotients, namely
G/I3(G). In general, G/I;11(G) is the universal i-nilpotent quotient of G.

The following easy lemma will be used very often in the sequel. In particular, we will often use
its contrapositive: if a group G has a quotient whose lower central series does not stop, then the
lower central series of G does not stop either.

Lemma 1.1 Let H be a quotient of G. If I;(G) = I'i11(G) for some i, then I'}(H) = Iy 1(H).

Proof. For all k > 1, it follows from the definition of the lower central series that I, H = 7(I}G).
As a consequence, ;11 H = I';H whenever I;,1G = I;G. O

We recall that a group G is called residually nilpotent if its residue I'x(G) := () 1i(G) is equal
to {1}. The following result will be useful to us in our calculations of residues and quotients by
residues:

Proposition 1.2 Let G be a group, and let N be a normal subgroup of G. Suppose that for some
i 22, NNILi(G) = {1}. Then I'x(G) = I'w(G/N) is an isomorphism. In particular, G is
residually nilpotent if and only if G/N is. Moreover, we have a short exact sequence:

N < G/Ts — (G/N)/ .

Proof. Let w : G — G/N be the corresponding projection. Since N N [ (G) = {1}, the induced
morphism I'n,(G) = ' (G/N) is injective. Let us show that it is surjective. Let y € I'no(G/N).
Since I',(G/N) = n(IG) by definition of the lower central series, there is, for each k > 1, some
x € I't(G) such that m(xg) = y. Then J;kx,;il € N N I';(G), which implies that a:km,;ll =1
whenever k > i. Thus the sequence (xy) is stationary at = := x;, which must be in I'n(G) by
definition of the zy, and is sent to y by mw. This proves the first part of the Proposition. Now, let
us consider the commutative diagram of groups:

1 —— I'o(G) —— T'»o(G/N)

l

|
N G G/N
|

|

N ----- > G/l -—--- > (G/N)/T's.

By the Nine Lemma, the bottom row must be a short exact sequence. O

The following corollary provides a partial converse to Lemma 1.1:

Corollary 1.3 Let G be a group and A be a central subgroup of G. Suppose that for some i > 2,
the canonical map A — G/T;(G) is injective. If the lower central series of G/A stops at Iy, then
the lower central series of G stops at I}, or at Iy1.



Proof. The extension A — G/l — (G/A)/I'x from Proposition 1.2 is a central one. As a
consequence, if (G/A)/I's is k-nilpotent, then G/I» is nilpotent of class k or k + 1. O

Remark 1.4 We will mostly apply Corollary 1.3 with i = 2, that is, for A < G?P; see the proof
of Proposition 6.51 for instance.

1.2 Lie rings of lower central series

We now recall the definition and basic properties of a key tool for studying the lower central series
of a group, namely its associated Lie ring. We refer the reader to [Laz54, Chap. 1] for further
details.

Note that, for all i > 1, [[3(G), [:(G)] C [G, I3(G)] C I41(G) C I(G). Thus, I;(G) is a normal
subgroup of G, and the quotient £;(G) := I';(G)/I;+1(G) is an abelian group. Moreover, one can
show that [I;(G),I;(G)] C I;4+;(G) for all 4,5 > 1, which is the crucial property allowing us to
define the Lie ring associated with I, (G):

Proposition 1.5 ([Laz54, Th. 2.1]) The graded abelian group L(G) := €D, Li(G) is a Lie ring,
with the Lie bracket induced by the commutator map of G.

Convention 1.6 Let g be an element of G. If there is an integer d such that g € I'4(G) — I'q11(G),
it is obviously unique. We then call d the degree of g with respect to I, (G). The notation g denotes
the class of g in some quotient £;(G). If the integer ¢ is not specified, it is assumed that i = d,
which means that § denotes the only non-trivial class induced by ¢ in £(G). If such a d does not
exist (that is, if g € () [;(G)), we say that g has degree co and we put g = 0.

With this convention, the Lie bracket [—,—] of £(G) is given by the collection of bilinear maps
Li(G) x L;(G) = Li4+;(G) defined by:

Vz € Li(G), Yy € L;(G), [T,7] = [2,y] € Li1;(G).

The following lemma, which will be used several times in the sequel to identify G/I's, for some
group G, is one illustration of the use of Lie rings in studying the lower central series:

Lemma 1.7 Let p: G - @Q be a surjective group morphism. If Q is a residually nilpotent group,
then the following conditions are equivalent:

e L(p): L(G) — L(Q) is an isomorphism.
e p induces an isomorphism G /s =

Proof. If @ is residually nilpotent, p induces a map G/I'5, — @ between two residually nilpotent
groups. Since G — G/, induces an isomorphism between the associated Lie rings, the statement
for G can be deduced from the statement for G/Iy,. Thus, we can assume that G is residually
nilpotent and, under this hypothesis, we need to show that p is an isomorphism if and only if £(p)
is. Clearly, if p is an isomorphism, then £(p) is too. Conversely, if p, which is surjective, is not an
isomorphism, then there is some non-trivial element z in its kernel. Since G is residually nilpotent,
x induces a non-trivial class Z in £(G), which is sent to 0 by L£(p). This implies that £(p) is not
injective, which concludes our proof. O

1.3 Computing abelianisations from decompositions

Let us recall some classical tools for computing the abelianisation from some decomposition of a
given group. The abelianisation functor G — G®P is a left adjoint, hence right exact. In order to
compute the abelianisation of an extension, one can say more:

Lemma 1.8 Let H — G — K be a short exact sequence of groups. It induces the following exact
sequence of abelian groups:
(H®) g — G — K*® -0,

where coinvariants are taken with respect to the action of K on H*® induced by conjugation in G.



Proof. The conjugation action of G on H2P factors through G/H = K, hence (H**)g = (H*")
Since we have an exact sequence H*» — G*P — K2 — 0, it suffices to show that the morphism
H* — G#P factors through (H*")g. It is equivariant with respect to the action of G' induced by
conjugation, which is obviously trivial on G®P, whence the result. O

For split exact sequences, we can say even more:

Lemma 1.9 The abelianisation of a semidirect product H x K is isomorphic to the product
(H®®) g x Kb where (H*)y denotes the coinvariants of H®® with respect to the induced ac-
tion of K.

Proof. As a consequence of the usual formula [z, yz] = [z, y](z[z, z]z~1), one sees that the commu-
tator subgroup [H x K, H x K] is normally generated by [H, H], [H, K] and [K, K]. We can take
the quotient by these three sets of relations successively: (H x K)/[H, H] is isomorphic to H*® x K
then killing [H, K| gives (H**) ¢ x K and finally, ((H**)x x K)/[K, K] = (H*) x Kb, O

2 Strategy and first examples

In this section, we present some general ideas used to decide whether the lower central series stops
or not. As a first example, we then apply these ideas to Artin groups.

2.1 Generation in degree one — first consequences

The Lie ring associated to the lower central series has the following fundamental property:

Proposition 2.1 The Lie ring L(G) is generated in degree one. That is, it is generated by the
abelianisation £1(G) = G*" as a Lie algebra over 7Z.

Proof. Tt is a direct consequence of the definitions: the equality Li(G) = [£1(G), Lr-1(G)] is
obtained directly from I'y(G) = [I'1(G), [,-1(G)], by passing to the appropriate quotients. O

A first consequence of this is the following:

Corollary 2.2 Let G be a group. If G* is cyclic, then I,G = I'3G.

Proof. Proposition 2.1 implies that the Lie ring £(G) is a quotient of the free Lie ring on G#b.
Since G?P is cyclic, the latter is the abelian Lie ring consisting only of G". As a consequence,
I,G/I3G = L5(G) = {0}. O

Example 2.3 (Braids) Directly from their usual presentations, one computes the abelianisation
of the braid groups: B2 = Z for n > 2. Thus I:(B,) = I3(B,). This fact is originally due
o [GL69], who proved it by different methods. This property of B,,, which is also true for any
quotient of B,, (such as the symmetric group &,, for instance), may also be seen as a particular
case of the computations for Artin groups below.

Example 2.4 (Knot groups) For any knot, the knot group has (infinite) cyclic abelianisation,
thus its lower central series stops at I's. This generalises readily to the enveloping groups of any
connected quandles; see [BNS19, Prop. 3.3] for instance.

Example 2.5 (Automorphisms of free groups) Consider the automorphism group Aut(F,,) of the
free group on n letters. The kernel I A4,, of the projection from Aut(F,,) onto Aut(F2P) = GL,,(Z) is
generated by the usual K;; and K, j; from [MKS04, §3.5], which are easily seen to be commutators
of automorphisms. Thus Aut(F,,)* = GL,(Z)*". Whenever n > 3, this group is cyclic of order
two, so the lower central series of Aut(F,,) stops at Iy, and so does the one of GL,,(Z).

An easy generalisation of Corollary 2.2 is:



Corollary 2.6 Let G be a group. Let S be a generating set of G*P. Suppose that for each pair
(s,t) € S%, we can find representatives 5, € G of s and t such that § and t commute. Then
I,G = I3G.

Proof. The Lie ring £(@) is generated by S. Moreover, the fact that [3,¢] =1 in G readily implies
that [s,t] = 0 in £(G). Since the brackets [s,t] for (s,t) € S? generate L2(G) = [£1(G), L1(Q)],
we see that [2G/I3G = Lo(G) = {0}. In fact, £(G) is an abelian Lie ring, reduced only to
L1(G) = G#P. O

We have not made any effort to make the above corollary as general as possible. In particular,
5 and £ may commute only up to an element of I'3G, and the conclusion still holds. Also, one
may think of similar statements showing that [5G = I'yG, and so on. Weak as it may seem, our
statement is already very useful. In particular, when applied to groups whose elements have a
geometrical interpretation, it will often happen that § and ¢ can be chosen with disjoint support
(whatever this means, depending on the context — see for instance §4.1 for precise definitions in
certain cases), which readily implies that they commute. We will sometimes need a more refined
version of the above, but we will discuss it in each particular situation.

Example 2.7 (Automorphisms of F3) As an example of a case where Corollary 2.6 does not
work, but the same kind of technique does apply, let us consider Aut(F2). We have mentioned
that Aut(F,,)*” = GL, (Z)*"; see Example 2.5. For n = 2, this is no longer cyclic, but isomorphic
to (Z/2)?, generated by the (equivalences classes of the) automorphisms o and 7 acting as follows
(fixing free generators x and y of Fy):

1

ox)=y oy ==z @)=z 7(y) =y

Tt follows that L£o(Aut(F2)) is generated by the (equivalence class of the) automorphism ¢ = [, 7]
acting by «(z) = 27! and «(y) = y~*. It is easy to check that : commutes with both ¢ and 7, so
L3(Aut(F3)) = 0. Thus, the lower central series of Aut(F3) stops at I's, as does that of GLy(Z).

Let us spell out another useful consequence of Proposition 2.1:

Corollary 2.8 Let G be a group and d > 1 be an integer. If Li.(G) = TG /Ik+1G is a d-torsion
abelian group for some k > 1, then L;(G) = [G/I1411G is too for all integers | > k.

Proof. If an element z € L(G) is of d-torsion, then for all y € L(G), the bracket [z,y] is too,
because d - [x,y] = [d - x,y] = 0. Since L;11(G) = [L1(G), Li(G)], we get our result by induction
on . O

Example 2.9 (Virtual and welded braids) Let G be a group such that G* = Z x (Z/d), where
the factors are generated, respectively, by u and v. Then Lo(G) is generated, as an abelian group,
by [u,v]. Since d - [u,v] = [u,d - v] =0, L2(G) is of d-torsion, and then all the L;(G), for k > 2,
must be too. This applies, for instance, to the groups vBs and wBy (which are both isomorphic
to Z x7Z/2), with d = 2; see §4.

2.2 Artin groups
Let S be a set, and M = (ms)ses be a Coxeter matrix, i.e. a symmetric matrix with coefficients

in NU {oo}, with ms s =1, and ms, > 2 if s # ¢. Let Ay be the associated Artin group, defined
by the presentation:

Ay = <S ststs--- =tstst--- (s,t €S, msy # oo)> .
Ms,t Mms,t

Let us consider the graph G whose incidence matrix is M modulo 2. Namely, G is obtained by
taking S as its set of vertices and by drawing an edge between s and ¢ whenever m,; is an odd
integer.



Lemma 2.10 The group A3P is free abelian on the set m(G) of connected components of G.

Proof. This is clear from the presentation: the relation between s and t becomes 5 = ¢ in A3? if
ms ¢ is odd, and becomes trivial if m, ; is even or m,; = oo. O
Let us now study the lower central series of Apr. Suppose first that G is connected. Then A3b is
cyclic, and Corollary 2.2 applies: the lower central series of A, stops at I'5. This holds in particular
for the classical braid group; see Example 2.3. Now, if G has several connected components, we
need to study the interactions between the corresponding generators of the Lie ring of Ap;. The
simplest case happens when all the even m,; are equal to 2. Then Ay, splits into the (restricted)
direct product of the Artin groups corresponding to the connected components of our graph, thus
L(Ap) is a direct sum of copies of Z (concentrated in degree one). Thus, we have obtained our
first result:

Proposition 2.11 If all the coefficients of M are finite, and are either odd or equal to 2, then the
lower central series of Ap; stops at Is.

In order to get a step further, we need to study more closely the interactions between the generators
of the Lie ring of Ap; corresponding to the connected components of G.

Lemma 2.12 Let s,t € S. If ms = 2k for some integer k, then k- [5,t] = 0 in L(Ap).

Proof. 1f mg; = 2k, then (st)* = (ts)¥ in Ap;. We can write this relation as (st)*(ts)™% = 1.
We recall that modulo I'5(Ajs), commutators commute with any other element. Hence, modulo
I'5(Apr), we have:

1= (st)*(ts) ™% = (st)F s, t](ts)~* =1 = [s,¢](st)*(ts) " *D = ... = [s,1]".

Thus, in Lo(Anr), we have 0 =k - [s,t] = k - [s, ], as claimed. O

From this, we deduce that for z,y € mo(G), we have dy , - [z,y] = 0 in Lo(Anrr), where dy , =1

and dyy = ged {75 | s,t € S, == and t =y} if z # y. In particular, this proves:

Proposition 2.13 If all the coefficients of M are finite, then I's(Apr)/I3(An) is of d-torsion,
where d =lem{d, , | x,y € m0(G)}.

Remark 2.14 Proposition 2.13 is more general than Proposition 2.11, which is recovered as a
particular case where d = 1. In fact, for d to be equal to 1 (which implies that the lower central
series stops at ), we do not need the even m,; to be equal to 2, but only all the d, , to be equal
to 1.

Remark 2.15 Proposition 2.13 does not say anything when at least one of the d,, is infinite.
For instance, when all the m; are infinite, A;s is the free group on S, whose Lie ring is without
torsion. More generally, Right-Angled Artin Groups (where all the m, ; are infinite or equal to 2)
have torsion-free Lie rings [DK92].

3 Partitioned braids

This section is devoted to the study of lower central series of the group of partitioned braids; see
Definition 3.2 below. Our main results are summarised in Theorem 3.5. The group of partitioned
braids is a subgroup of B,,, which has been studied notably in [Man97] and in [BGG17]. The
former gave a presentation of this group, using the Reidemeister-Schreier method, which could be
applied to this finite-index subgroup of Artin’s braid group.

Remark 3.1 One could use the aforementioned presentation of the partitioned braid group
[Man97] to get generators, a calculation of the abelianisation, and (with a little bit of work) the
stable case in the study of the lower central series. However, we will avoid using this presentation
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altogether, for several reasons. Firstly, we want our paper to be as self-contained as possible. Sec-
ondly, even if a presentation is of some help in the study of the lower central series of a group, there
is only so much that one can deduce directly from it; in fact, not much more than a computation
of the abelianisation, and that I'y = I'3 when it holds. In particular, most of our non-stable results
would not be simplified by using the presentation. Thirdly, and perhaps most importantly, to the
best of our knowledge, nobody has written down a presentation of the other partitioned groups
that we study later on. This could certainly be done using the Reidemeister-Schreier technique
(at least when we have a presentation of the non-partitioned group), but this would require a fair
amount of work, which we intend to avoid. And we will do so precisely by generalising proofs
which do not depend on the use of Manfredini’s presentation.

3.1 Reminders: braids

We recall that the standard generators o; and A;; of the braid group B, and of the pure braid
group P, respectively, are the braids drawn in Figure 3.1. In Figure 3.2 they also appear in a
“bird’s eye view” as paths of configurations.

I N\ N

AN ] T
/ o

| 1 J

\ J \ J

Figure 3.1 The standard generators o; and A;; of, respectively, the braid group and of the pure braid
group.

3.2 Basic theory of partitioned braids

For a partition A = (nq,...,n;) of an integer n, we denote by &, the subgroup &,, X --- x &,, of
the symmetric group S,,. Let us now consider the braid group B,, on n strands, and the usual
projection 7 : B,, - G,,.

Definition 3.2 Let n > 1 be an integer, and let A\ = (nq,...,n;) be a partition of n. The corre-
sponding partitioned braid group (also referred to as the group of A-partitioned braids) is:

By =76\ =116, x-x6,) CB,.

Lemma 3.3 Let A = (ny,...,n;) be a partition of an integer n > 1. Then By is the subgroup of
B,, generated by:

e The o, for 1 < a < n such that o and oo+ 1 are in the same block of .
o the Aup, for 1 < a < B < n such that o and B do not belong to the same block of A.

Proof. Consider the subgroup G of B,, generated by these elements. Clearly, G C B, and we need
to show that G contains B). First, we see that G contains B,,, x - -- x B,,, which is generated by
the chosen o,. As a consequence, 7(G) = &,, X --- X &,,. Then, G also contains the A3, for all
1 < a < B < n. Indeed, the A, missing in the list of the statement are the ones with a and 3 in
the same block of A, which are exactly the ones belonging to B,,, x --- x B,,,. Thus, G contains
all of P,,. Now, if 3 is any A-partitioned braid, then 7(3) € &,,, x -+ x &,,,, hence we can choose
g € G such that m(g) = m(8). Then g~!f is a pure braid, thus g~ '3 € G, which implies f € G. [

We now compute Bib, using the above, together with the split projections corresponding to for-

getting blocks of strands. These projections can be seen as particular cases of the projections from
Proposition 6.25 below, applied to braids on the disc.
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Proposition 3.4 Let A = (ny,...,n;) be a partition of an integer n > 1. The abelianisation B‘}\b
1s free abelian on the following basis:

o Foreachi€ {1,...,1} such that n; > 2, one generator s;: this is the common class of the o,
for a and o + 1 in the i-th block of A.

o For each i,j € {1,...,1} such that i < j, one generator a;;: this is the common class of the
Aqp for o in the i-th block of X and B in the j-th one.

Proof. The abelianisation B3P is generated by the classes of the generators from Lemma 3.3.
Moreover, we note that for any ¢, all the o, with o and a + 1 in the i-th block of A (which exist
only if n; > 2) are conjugate to one another: for instance, if n; > 3, then oo = (0201) 1oy (0201)
is a conjugation relation inside By. Similarly, for each choice of i < j, all the A,3 with « in the
i-th block and S in the j-th one are conjugate to one another. Thus, the family described in the
statement is well-defined and generates B3P. Let us show that it is linearly independent, by using
the projections obtained by forgetting strands.

Suppose that > k;s; + > kija;; = 0 for some integers k; (¢ <) and k;; (1 < j <1). Let us fix ¢
such that n; > 2, and let us apply the canonical projection Bib —» B%‘j’ = 7 to the above relation.
Since this projection kills all the generators save s;, we get k; = 0. This holds for all i, so we are
left with the relation > k;ja;; = 0. To which, for any choice of ¢ < j, we can apply the morphism
B> - B3>, — B, = 7. This kills all the ay, save a;; (which is sent to 2), hence k;; = 0,
whence the result. O

3.3 The lower central series

This section is devoted to the proof of the following result, which states exactly when the lower
central series of the partitioned braid group stops.

Theorem 3.5 Let n > 1 be an integer, let A = (ny,...,n;) be a partition of n. The lower central
series of the partitioned braid group By :

o stops at Is if n; = 3 for all i, save at most two indices for which n; = 1.
o does not stop in all the other cases, except for By = Z.

Proof. The first statement consists of Propositions 3.6, 3.8 and 3.9 (each of which is a generalisation
of the previous one). The second one consists of the cases when X has at least three blocks of size 1
(see Lemma 3.7), exactly one block of size 2 together with blocks of size at least 3 (see Proposition
3.11), at least two blocks of size 2 (see Corollary 3.14), or at least one block of size 1 and one block
of size 2 (see Corollary 3.17). O

3.3.1 The stable case: a disjoint support argument

Proposition 3.6 Let n > 1 be an integer, let A\ = (nq,...,n;) be a partition of n. Suppose that all
the n; are at least equal to 3. Then the lower central series of By stops at 5.

Proof. Consider the generating set for B§” described in Corollary 3.4. For any pair of such gener-
ators, it is possible to find lifts in By having disjoint support (as mapping classes of the punctured

disc), and thus commuting — see Figure 3.2 for the three cases that may arise. Then, we can apply
Corollary 2.6 to prove our claim. O

3.3.2 Blocks of size 1

Lemma 3.7 If at least three blocks of the partition \ are of size 1, then the lower central series of
B, does not stop.

12



Figure 3.2 Choosing representatives with disjoint support for pairs of generators of the abelianisation
of the partitioned braid group.

Proof. Under the hypothesis, there is a surjection By — Bj 1,1 = P3 obtained by forgetting all
the blocks save three blocks of size 1. The lower central series of P3 = F5 x Z does not stop, since
it is an almost-direct product, and the lower central series of Fy does not stop; see for instance
[FR85]. As a consequence, the one of By does not either by Lemma 1.1. O

Proposition 3.8 Let n > 1 be an integer, let A = (1,nz...,n;) be a partition of n, with all the n;
for i > 2 at least equal to 3. Then the lower central series of By stops at Is.

Proof. The case I =2 (i.e. A = (1, m) for some integer m > 3) works exactly like the stable case
of Proposition 3.6. Namely, the two generators of the abelianisation do have lifts with disjoint
supports, so that I»(By ,,,) = I3(B1,,) by Corollary 2.6. This however does not work for [ > 2.

Let us denote by p the partition (ns...,n;) of n — 1, so that A = (1, u). We are going to show that
B, /Iy is abelian, which implies Iy, = I'» for Bj.

It follows from Proposition 3.6 that I'., = I for B,. As a consequence, the obvious morphism
B, — B, /I factors through B, /I = Bib7 which implies in particular that modulo I, we
have 0, = 0/, and A, = Ay p if  and o (resp. § and 3') are in the same block of i, and that
the corresponding classes s; and a;; commute with one another. In the same way, we can deduce
from the case of By ,, for m > 3 treated above that the class of a generator A;, depends only
on the block of a. More precisely, we use the fact that the obvious morphism B ,, = B1 /I
factors through B‘}f’ni, where all the A, are identified. Moreover, the corresponding a1; commutes
with all the s, and a,, coming from B, since they have lifts in By with disjoint support.

We are left with showing that a;; commutes with a1; when 7 < j. This uses Lemma 3.10 below. Let
us choose any « in the i-th block and any S in the j-th one, and consider the morphism P3 — B
induced by 1+ 1, 2 — a and 3 — S. If we compose it with the projection onto B /I, we get a
morphism f sending A5 to a1, A13 to ai;, and Asz to a;. Since a;; commutes with aq;, f sends
[A13, Ag3] to 1. Lemma 3.10 then implies that it factors through P&P, so that all the elements in
its image commute, including a1; and a;;. This finishes the proof that B, /Iy is abelian, whence
equal to By/TI%5. O

Proposition 3.9 Let n > 1 be an integer, let A = (1,1,ns3...,n;) be a partition of n, with all the
n; for i > 3 at least equal to 3. Then the lower central series of By stops at 5.

Proof. Let p denote the partition (ns...,n;) of n — 2, so that A = (1,1, ). It follows from Proposi-
tion 3.8 that I'x = I’ for By ,, hence both the obvious maps By, — B)/I'x factor through B‘ff’u.
From this, we deduce that By /I is generated by elements s; (3 <4 <) and a;; (1 <i<j <),
and that the aq; (resp. the ag;), the s, (p > 1) and the ap, (¢ > p > 3) commute with one another.
Moreover, for all 4, j > 3, a1; and ag; have lifts with disjoint support in By, so they commute (even
when i = j).
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We are left with showing that the class a12 of Aj2 commutes with all the other generators. A
disjoint support argument shows that it commutes with the s; and ag; for [ > k > 3. Now, for
1 > 3, let us choose « in the i-th block, and let us consider the morphism P3 — B, induced by
1+~ 1,2 2and 3 — a. If we compose it with the projection onto By /I'w, we get a morphism
f sending A12 to a2, A13 to aiq, and A23 to ag;. Since ay; commutes with ag;, f sends [Alg, Agg]
to 1. Lemma 3.10 then implies that it factors through P&P, so that all the elements in its image
commute, showing that a1 commutes with aq; and with ag;. Thus, we have proved that By /Iy
is abelian, whence ', (B)) = I2(B,). O

Lemma 3.10 The quotient of P3 by the relation [Ay3, Aaz) = 1 is P3P = 73,

Proof. Let N be the normal closure of [A;3, A23] in P3. We want to show that N = I3(P3).
Clearly, N C I'3(P3). To show the converse inclusion, we need to show that P3/N is abelian. We
check that the relations A12A13A1_21 = A2_31A13A23 and A1_21A23A12 = A13A23A1_31 hold in P3. Asa
consequence, modulo the relation [A;3, Ags] = 1 (that is, modulo N), we get Aj2A13A7, = A;3 and
Af21A23A12 = Asz. Thus A9, A3 and Agz commute modulo N and therefore P3/N is abelian. [

3.3.3 Blocks of size 2

When there is exactly one block of size 2 and no block of size 1, we get a complete description of
the quotient of By by its residue:

Proposition 3.11 Let n > 1 be an integer, let A = (2,n2...,n;) be a partition of n, with all the
n; at least equal to 3. Then By /I, decomposes as a direct product of I(1 — 1)/2 copies of Z with
720-1) Z, where Z acts via the involution exchanging the elements es; and es;+1 of a basis of
720 In particular, if | > 2, then the lower central series of Bx does not stop.

Proof. Let u denote the partition (ng,...,n;) of n — 2, so that A = (2, ). Then the canonical
projection By, - &5, — &3 has By 1, as its kernel. Moreover, I, (B ) contains I'g(B1,1,,),
which is equal to I(By,1,,,) by Proposition 3.9. We show that these are in fact equal. In order to
do this, it is enough to show that By ,/I5(B1,1,,) is residually nilpotent. In fact, we are going to
compute it completely.

First, let us remark that it makes sense to consider this quotient: I»(Bi,,) is a characteristic
subgroup of By 1, which is normal (of index 2) in By ,, hence it is a normal subgroup of By .

Next, we can write Bs ,,/I5(B1,1,,,) as an extension:

B?})LIJ« —> B2;IJ«/F2(B171>P«) E— 62. (31)
We can use the method from §A.3 to get a presentation of G := By, /I%(B1,1,,). Namely, we
have a presentation of the kernel: B*ﬁy ., is free abelian on the s; and the a;; indexed by the blocks
of (1,1,u). We also know the action of G5 on B?Fl,u induced by conjugation by o1 in Bg,: it
exchanges the a;; with the ay; with j > 3 and it acts trivially on all the other generators. Finally,
we can lift the only relation defining S5 to 0f = Aj2 in By,,. As a consequence, we get the
presentation:

Vi7jap7Qauav7 [Si?sj] = [3i7apl}] = [aplI?aUU] = 17
s, Vi>1, [s,8:] =1,
G= s (3<i<i+ ], Vi>12>3, [s,ai] =1,
ai; (1<i<j<l+1). |Vj=3, saljs_l = ag; and sazjs_l = aiy,
82 = a12-

Then one can deduce from this presentation that G decomposes as ZN x (Z*(=1) x Z) where the
first factor is free abelian on the s; (i > 3) and the a;; (j > > 3) (hence N = (I —1)/2), and the
action of Z (free on s) on Z2("1) (free abelian on the a;; and the ay;) is given by s exchanging the
a1; and the ag;. Checking that this holds is a matter of writing the appropriate split projections
from the presentations of GG; and its factors.
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Finally, the decomposition of G allows us to apply Proposition B.10 to compute its lower central
series. Namely, we apply it to A = (a1;, az;);>3 (which is free abelian on these generators) endowed
with the involution 7 exchanging a;; with ag; for all j. Then V = Im(7 — 1) is the free abelian
subgroup generated by the aj; — asj, and for k > 2, we have I',(G;) = 2=V, In particular, this
lower central series does not stop. However its intersection is trivial: the group G, is residually
nilpotent, which implies that I (B2 ) = I'eo(B1,1,,), and finishes our proof. O

Remark 3.12 The Lie ring of G (which identifies with the Lie ring of By ;) can be completely
computed, using Corollary B.11. Namely, it identifies with ZV x (L x Z), where L = Z!=! @
(Z)2) ' @ (Z/2)!""1 @ --- and the action of the generator ¢ of Z on L is via the degree-one map
77— (z/2)171 = (Z/2)! "1 = ... . In other words, as a Lie ring, £(B3,,) admits the presentation
via generators t, X1, ..., X;_1, Y1, ..., Yy and relations:

Y2, Y] = [Vi, Xie] = [Yi, 8] = [ X, Xi] =0,
2[t, X,] = 0.

Proposition 3.13 The lower central series of Bo o does not stop.

Proof. Since Ba s surjects onto By (S?), this is a direct consequence of Proposition 6.53, by an
application of Lemma 1.1. Alternatively, one can adapt the proof of Proposition 6.53 to this case,
getting that:

Boo/(A12, Asa, I[2(Py4)) = (Z2)®2 X (62)27

where &, acts on Z2 by permutation of the factors. Then the methods of the appendix can be
used to compute completely the lower central series of this group. O

Corollary 3.14 If at least two blocks of the partition A are of size 2, then the lower central series
of By does not stop.

Proof. Under the hypothesis, there is a surjection By — Bgs. Thus, this corollary is obtained
from a direct application of Lemma 1.1. O

3.3.4 Blocks of size 1 and 2: study of B, »

We use that B o is isomorphic to the Artin group of type Bg, a classical fact of which we give a
proof, for the sake of completeness.

Lemma 3.15 The group By o is isomorphic to the Artin group G = (o,z | (oz)? = (z0)?). As a
consequence, it is residually nilpotent, but not nilpotent. In particular, its lower central series does
not stop.

Proof. On the one hand, we can re-write the presentation of G as:

G = (o,z,y | (0x)* = (z0)?, y =oxc™t).
Then, modulo the second relation (which we conveniently rewrite yo = ox), the first one is
equivalent to (yo)? = x(yo)o, and in turn to oyo~! = y~lzy. Thus:

G=(o,z,y|oxo " =y, oyo ' =y ay).
On the other hand, the projection B;o — By = Z splits, and its kernel identifies with the
fundamental group of the disc minus two points, which is free on two generators x and y. In fact,
the corresponding action of By 2 (o) on Fs is the usual Artin action. Which means exactly that

the above relations are true in By 2. Whence a surjection of G' onto By 2, which induces a diagram
with (split) short exact rows:

(,y) G Z
l | |
F2 Bl 2 B2 = 7.




Using the freeness of their target, one sees that the left and right vertical maps must be isomor-
phisms, hence so is the middle map, by the Five Lemma. The rest of the statement is then a
reformulation of Proposition B.20. O

Remark 3.16 More precision is given by Proposition B.21, which describes the Lie ring of the
group G (hence of By 3). If, on the contrary, one wishes only to see that the lower central series
of G does not stop, one can argue directly from G — Z % (Z/2) — (Z/2) x (Z/2) = Z x (Z/2) and
the explicit computation of the lower central series of Z x (Z/2), see §B.3.2.

Corollary 3.17 If the partition X has both a block of size 1 and a block of size 2, then the lower
central series of By does not stop.

Proof. There is a surjection By — B 2, to which we can apply Lemma 1.1. O

4 Virtual and welded braids

In this section, we study the lower central series of the virtual, welded and extended welded braid
groups, which are generalisations of the classical braid groups. Presentations of these groups may
be found in §A.1.1. Our results for each of them are given, respectively, in Propositions 4.9, 4.11
and 4.16. We also study the lower central series for the partitioned versions of each of these groups;
the corresponding results are summed up as Theorem 4.22.

4.1 Notion of support of an element

In order to apply disjoint support arguments, we first need to discuss the notion of support for
elements of our groups. We will use the following notion of support of an automorphism of F,,.

Definition 4.1 Let F,, be the free group on n (fixed) generators x1, ..., Z,, and let ¢ € Aut(F,,).
The support Supp(p) of @ is:

Supp(yp) ={i € {1,...,n} | ¢(z;) # x; or z; appears in some p(x;) for j # i},
where x; is said to appear in w € F,, if xiﬂ is a letter in the reduced expression of w.

Example 4.2 With the notations from section A.1.4, we have:
* Supp(pa) = {a}
o Supp(os) = Supp(7y) = {o, a0 + 1}
* Supp(xas) = {a, B}

Fact 4.3 If ¢ and ¢ are automorphisms of ¥, with disjoint support, then they commute.

Proof. Observing that ¢(x;) = x; for i ¢ Supp(p), and that ¢(z;) is a word in {z; | j € Supp(y)}
for i € Supp(yp), it is easy to see that

¢(x;) i € Supp(p)
Y(p(zi) = ((xi) = (i) i € Supp(v)
z; i ¢ Supp(y) U Supp(z),

forallie {1,...,n}. O

Welded braid groups wB,, and extended welded braid groups wB,, are naturally subgroups of
Aut(F,,), so this defines the support of an element of any of these groups. On the other hand,
virtual braid groups vB,, do not naturally embed into Aut(F,,), so we define the support of their
elements differently, using the diagrammatic description (§A.1.2) of vB,, as a group of equivalence
classes of n-strand braid diagrams with both classical and virtual crossings.
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Definition 4.4 Let ¢ € vB,,. The support Supp(y) C {1,...,n} of ¢ is the set of i € {1,...,n}
such that either

4 is not fixed by the permutation of {1,...,n} induced by ¢, or
e in every n-strand diagram representing ¢, there is a classical crossing on the ¢-th strand.

Welded braid groups wB,, also admit a similar diagrammatic description (see §A.1.2), so one may
define Supp(y), for ¢ € wB,, C Aut(F,,), either as in Definition 4.1 or as in Definition 4.4.

Lemma 4.5 These two definitions of Supp(yp) for ¢ € wB,, C Aut(F,,) agree.

Proof. According to Definition 4.4, we have i ¢ Supp(y) if and only if i is fixed by the permutation
of {1,...,n} induced by ¢ and there is an n-strand diagram representing ¢ with no classical
crossings on the i-th strand. The first condition is equivalent to saying that ¢(z;) is conjugate to
x;. The second condition splits into two statements: there is an n-strand diagram of ¢ with no
classical crossings involving the i-th strand as the upper strand and no classical crossings involving
the i-th strand as the lower strand. These two statements corresponds to saying that no x; (for
J # 1) appears in ¢(z;) and that z; does not appear in any ¢(x;) (for j # ¢). Combining the first
of these statements with the condition that ¢(z;) is conjugate to z;, we obtain the condition that
(x;) = x;. Hence i ¢ Supp(y) if and only if ¢(z;) = z; and z; does not appear in any ¢(z;) (for
j #1). This is precisely Definition 4.1. O

Remark 4.6 Similarly, extended welded braid groups wB,, also admit a diagrammatic description
(see again §A.1.2), and so in this case one also has two possible definitions of Supp(y) using either
Definition 4.4 or Definition 4.1. As in Lemma 4.5 for the non-extended case, these two definitions
agree.

Fact 4.7 If ¢ and i) are elements of vB,, with disjoint support, then they commute.

Proof. Tt will suffice to show that ¢ and ¥ commute after conjugating them both by the same
element of vB,,. By conjugating with an appropriate element (involving only virtual crossings),
we may therefore arrange that Supp(¢) = {1,...,r} and Supp(¢p) = {r +1,...,7 + s} for some
r+s < n. By the virtual Reidemeister moves (specifically the detour moves), we may then arrange
that we have diagrams D, D, for ¢, ¢ such that

Dy=D,®L,, and Dy=L®D,®L,_,_,,

where I, denotes the trivial k-strand diagram and ® denotes placing virtual braid diagrams side-
by-side. By “vertically sliding the subdiagrams D:o and D/, ”, we see that

Dgp o Dw = (D{p ®L® Hn—r—s) o (Hr & Dip & ]In—r—s)
= (L, ®D)®L_r_s) 0o (D, ®L; ®Ln_r_s)
= D,([) o D(p' D

Remark 4.8 There is another interpretation of the notion of support in the case of welded and
extended welded braids, where we view elements as loops of configurations of unlinked, unknotted
circles. In this interpretation the notion of support is more visually obvious, without having
to explicitly invoke the virtual and welded Reidemeister moves. For example, Figures 4.1 and
4.2 depict the same pair of elements, X3, and o, representing generators x;; and s; of the
abelianisation of the welded braid group. In each case the supports are coloured blue and red
respectively: in the former case these are (disjoint) compact subsets of R?, in the latter case they
are (disjoint) subcollections of strands.

4.2 Virtual braids

The group vB,, of virtual braids is a quotient of B,, *&,,, obtained by adding some mixed relations
between the generators of B,, and those of &,,; see the presentation (A.1). These mixed relations
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Figure 4.1 The supports of o4 and Xg,o’ interpreted as loops of configurations of unlinks.
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Figure 4.2  The supports of 0o and Xg,o’ interpreted diagrammatically.

correspond in the diagrammatic setting to the mixed Reidemeister-III moves described on the
left-hand side of Figure A.3.

Let us remark that we can compute WB?Lb easily, using the presentation of Proposition A.2. Namely,
for n > 2, wB™ =~ 7Z @ (Z/2), where the first factor is generated by the common class o of the
braid generators o;, and the second one is generated by the common class 7 of the symmetric
generators ;.

Proposition 4.9 The lower central series of the virtual braid group vB,,:

e stopsat Is ifn>4
¢ does not stop if n = 2, 3.

Moreover, vBsy is residually nilpotent, whereas vBg3 is not.

Proof. From the presentation of the virtual braid group vB,, of Proposition A.2, we deduce that
in vBi‘Lb all the o; have the same class o and all the 7; have the same class 7.

Case 1: n > 4. Then o7 and 73 represent respectively ¢ and 7, and they commute, since they
have disjoint support ; see Figure 4.3 for an illustration. Hence we can apply Corollary 2.6 to
conclude that I'3(vB,,) = I'5(vB,,).

Case 2: n = 2. The group vBy = Z x Z/2 is residually nilpotent, but not nilpotent; see Proposi-
tion B.19. In particular, its lower central series does not stop.

Case 3: n = 3. One can see directly from the presentation of vBg that there is a well-defined
surjection 7 : vBs — vBo, sending o1 and o3 to o1, and 7y and 7 to 7;. This induces a surjection
L(m) : L(vB3) - L(vB2), hence the lower central series of vB3 does not stop by Lemma 1.1.

Finally, the canonical map &3 — vBj3 sending 7; to 7; (i € {1,2}) splits, is thus injective, and &3
is not residually nilpotent. This implies that vBj is not residually nilpotent. O



We can describe precisely the behaviour of the lower central series of vB3:

Proposition 4.10 The surjection  : vBs — vBy described in the proof of Proposition 4.9 induces
an isomorphism vBs/I's = vBs. In particular, L(m) is an isomorphism between the associated
Lie rings.

Proof. We first show that £(7) is an isomorphism. The surjection 7 splits, a splitting ¢ being
given by o1 — o1 and 7, — 7 and corresponds to adding a third strand. This splitting induces
a surjection between abelianisations. Since the Lie rings associated to lower central series are
generated by their degree one, this implies that £(¢) is surjective. Thus, L£(m) and L£(¢) are
isomorphisms £(vB3) = £(vB3). Now, since vBs = Z % Z/2 is residually nilpotent, the result
follows directly from Lemma 1.7. O

/
/

Figure 4.3 Disjoint-support representatives for the two generators of the abelianisation of the virtual
braid group vB,, for n > 4. The supports are shaded in green and blue respectively.

4.3 Welded braids

The group wB,, of welded braids, also known as the group LB,, of loop braids, is a quotient of vB,,,
obtained by adding the relations ¢;0;117; = T;410;0;41; see the presentation (A.2). This relation
corresponds to the welded Reidemeister-I1I move described on the right-hand side of Figure A.3.
This allows us to deduce some results about the lower central series of wB,, from their counterparts
for vB,,. As a first example of this, note that wB2" =~ vB,, = Z & (Z/2).

Proposition 4.11 The lower central series of the welded braid group wB,,:

e stops at Iy if n > 4.
e does not stop if n = 2,3.

Moreover, wBs s residually nilpotent, whereas wB3 is not.

Proof. Case 1: n > 4. That I3(vB,) = I3(vB,) directly implies I'5(wB,,) = I'5(wB,). In
fact, one can easily see that our disjoint support argument for vB,, can be used in wB,, too. See
Figure 4.4 for an illustration from the point of view of “loop braids”; alternatively, see Figure 4.3
again, interpreted now as a diagram of welded braids instead of virtual braids.

Case 2: n = 2. There is no additional relation: wBy = vBy 2 Z x Z/2.

Case 3: n = 3. We treat this tricky case as a separate result. Namely, Proposition 4.12 below gives
a surjection from wBj3 onto Z/2xZ/2, whose lower central series does not stop by Proposition B.16.
The result thus follows from Lemma 1.1. O

The group wBj3 is a non-trivial quotient of vBg3, and our result on vB3 cannot be transferred to
wBj3, nor can we adapt directly the reasoning: the surjection vBs — vBy = wB, does not factor
through the quotient by our additional relation, leaving us with no obvious surjection from wB3
onto wBy. However, we are still able to compute wB3 /I, and the situation is very similar to
the case of virtual braids. In particular, the lower central series does not stop, but wBj3 is not
residually nilpotent.
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Figure 4.4 Disjoint-support representatives for the two generators of the abelianisation of the welded
braid group wB,, for n > 4. The supports are shaded in green and blue respectively.

Proposition 4.12 The residue I'y,(wB3) is normally generated by 0102_1 and T172. The quotient
G = wBs /Iy, has the following presentation:

G={or1 | =1, 027'27'02>.
Its center ZG is infinite cyclic, generated by o2, and:

G/ZG=T7)2+7/2.

Proof. The canonical map Bz — wBj3 sends I'n,(B3) to I'o(wB3). Since o105 € I3(B3) =
I'(Bs3), we deduce that 01051 € I'no(wBg3). The same holds with 7172, which is the image of
7172 € [5(63) = ['(S3) by the canonical map &3 — wBj3. Thus, 010;1,7'17'2 € I'no(WB3),
implying that wB3/Iy, is a quotient of the group G obtained from wBj3 by adding the relations
o1 = 09 and 1, = 7. We deduce from the usual presentation of wBj3 that G is indeed described
by the presentation of the statement. We are going to show that G is residually nilpotent, which
implies that G is indeed equal to wB3/I'» (it is the biggest residually nilpotent quotient of wBj3).
We first deduce from its presentation that the abelianisation of G is given by:

G = 7{5,7}/(27) = Z & Z)2.

In particular, & is not a torsion element of G*”, which means that no non-trivial power of o belongs
to FQ (G)

Now, consider the element 02 € G. It commutes with ¢ and 7, thus it is central. In particular,
(0?) is a normal subgroup. Moreover, the quotient G /{c?) is described by:

G/(o?) = (o, T|U2:T2:1, 027':7'02> = <O’,T|(72:7'2:1>’

which is exactly Z/2 x Z/2. Proposition B.16 then implies that G is residually nilpotent. Indeed,
if € I'o(G), then its image in G/(0?) 2 Z/2%Z/2 is in ['o(Z/2xZ/2) = {1}. Thus z € {(0?).
Since & is not a torsion element in G®°, we have (02) N [LG = {1}, whence z = 1.

Finally, we remark that Z/2 * Z/2 is centerless, implying that ZG consists only of (02). As & is
not a torsion element in G**, (¢2) has to be infinite cyclic, and all our claims are proved. O

Remark 4.13 Both vB3 and wB3 have a non-stopping lower central series, without being resid-
ually nilpotent. In this situation, we can ask whether the transfinite lower central series is worth
investigating: is our I'n(G) (which is in fact I,(G)) the intersection of all the terms of the
transfinite lower central series of G, or are there further terms in the transfinite lower central
series? In other words, is [G, I, (G)] equal I,(G), or is it smaller? In both cases, we have in
fact |G, I',(G)] = I,(G), so the transfinite lower central series stops at w. Indeed, in both cases,
I',(G) is normally generated by 7 T{l and oy a;l, belonging respectively to I»(S3) = I,,(63) and
FQ(B3) = Fw(Bg) Then:

7y b€ I3(63) = [63, [2(63)] = [63,L,(63)] C [G, IL,(G)].

The same calculation implies that [G, I, (G)] contains ;05 *, so it must contain I,,(G), as claimed.
The same argument will lead to the same conclusion for G = wBj3; see Proposition 4.16 and
Remark 4.17.
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4.4 Extended welded braids

Let us consider the space Fyg: (D?) of configurations of n unlinked oriented circles in the unit 3-disc
D3. By oriented circles, we mean that a configuration is defined up to positive re-parametrisation
of the circles. The group &, acts on it by permuting the labels of the copies of S'. The group
(Z/2)™ also acts on it, by changing the orientations of the different copies of S!. Both these actions
combine into an action of the hyperoctahedral group W,, = (Z/2) 1 &,,, which is obviously free.
Taking quotients thus induces a commutative square of coverings:

Fost (DS) — Fum (DS)/Gn

i i (4.1)

Fos1 (D) /(Z)2)" —— Fygi (D)) Wi,

We recall that the fundamental groups of F,g1(D?) and F,s:(D?)/&,, identify respectively with
wP,, and wB,,. Precisely, the correspondence between loops in F,g: (D%)/&,, and the generators
of wB,, is given as follows:

e 7; corresponds to swapping the circles ¢ and ¢ + 1 without either of them passing through the
other;

e o; corresponds to swapping the circles ¢ and 7 4+ 1 while the (¢ + 1)-th one goes through the
i-th one in the direction determined by the orientation of the latter.

We denote the fundamental group of Fyg1(D3)/W,, (resp. Fys:(D3)/(Z/2)") by wB,, (resp. wP,,)
and its elements are called extended welded braids (resp. pure extended welded braids). The vertical
maps in the diagram (4.1) can be thought of as “forgetting the orientation of the circles”. By taking
fundamental groups of (4.1), we get a square of injections:

wP, —— wB,,

j j (4.2)

wP, —— wB,,.

Moreover, we know from the usual theory of covering spaces that the quotient wB,/wP,, is
isomorphic to the acting group (Z/2) ! &,,. In fact, recalling that Z/2 = 71(P?) we can give a
geometric interpretation of the corresponding projection wB,, — (Z/2) 1 &,,: a loop braid is sent
to the collection of paths in P? described by the unit vector normal to each circle, together with
the permutation it induces.

Remark 4.14 We have been a little imprecise by what we mean by configurations of n unlinked,
oriented circles. One natural meaning is the space of all embeddings of n disjoint copies of S' into
the interior of D? whose image is an unlink, equipped with the Whitney topology, quotiented by
the action of orientation-preserving diffeomorphisms of the circles. Another natural meaning is the
subspace of this space consisting of all such embedded unlinks where the embedded circles are rigid,
in the sense that they are rotations, dilations and translations of the equator S' C S? = 9D?. The
latter space has the advantage of being a finite-dimensional manifold, and the above description
involving the unit normal vectors associated to a configuration makes sense. We will freely move
between these two viewpoints in light of the theorem of Brendle and Hatcher [BH13, Th. 4.1],
which says that these two models are homotopy equivalent.

A presentation of the group wB,, was given as [BH13, Prop. 3.3 and 3.7]; see also Proposition A.3.
It involves the presentation of wB,,, to which are added generators p; and several relations. As
a loop braid, p; corresponds to rotating the i-th circle by 180 degrees so that its orientation is
reversed.

One can check from the presentation that the projection wB,, - W,, = (Z/2) 1 &,, identifies with
the quotient of wB,, by the relations o; = 7;. This corresponds, on diagrams, to changing every
crossing into a virtual one. Moreover, this projection splits, as one can see either from the geometry
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or from the presentation: a basis of (Z/2)™ is sent to the generators p;, and &,, identifies with the
subgroup of wB,, generated by the 7;,. Thus we get the decomposition:

wB, 2 wP, x W,.

Lemma 4.15 For n > 2, the abelianisation WB2" is isomorphic to (Z/2)3. A basis over Z/2 is
given by o, T and p, which are respectively the common class of the o;, the 7; and the p;.

Proof. On can get this directly from the presentation of Proposition A.3. One can also see this as
a particular case of Proposition 4.21 below. O

Proposition 4.16 The lower central series of the extended welded braid group wB,,:

o stops at Is if n > 4.
e does not stop if n = 2,3.

Proof. Case 1: n > 4. As in the proof of Proposition 4.9, we show that each pair of generators of
wB2> may be represented by elements of wB,, with disjoint support. For the first two generators
in the list, this is possible since each of them may be supported inside a 3-ball in D? containing two
of the circles; see Figure 4.4. For one of the first two generators together with the third generator,
this is possible even for n > 3, since the third generator may be supported in a 3-ball containing
a single circle; see Figure 4.5.

Case 2: n = 2. For short, we denote o1 (resp. 71) by o (resp. 7) From the presentation of wBs,
we can see that the quotient by the relations p; = po = 1 admits the presentation:

wBs/(p1,p2) = (0,7 | =1 0=r10"" ).

But this is a presentation of Z x (Z/2), whose lower central series, computed in Corollary B.8, does
not stop.

Case 3: n = 3. It is known that wB3 contains B3 as a subgroup, hence it cannot be residually
nilpotent. In fact, [ (WB3) contains I (S3) = I2(63) and [ (B3) = I2(B3), which contain
respectively 7o and oq07 1 Let us consider the quotient G of WBj3 by these two relations, and
let us denote by 7 (resp. o) the common image of 71 and 72 (resp. o1 and o2) in G. We remark
that in G, po = mp171 and p3 = Topa7y are both identified with p; = Top179 = T1p271, SO We can
also speak of their common class p. From the presentation of wBg3, we get a presentation of G:

G=(omplp’=1"=1 0,72 p; op=pro 7).

The second group of relations, saying p is central, may be seen as disjoint support relations. Since
p is central, the last relation is equivalent to ¢ = 70~ !7. As a consequence, this presentation is
a presentation of Z/2 x (Z x (Z/2)), whose lower central series does not stop, again thanks to
Corollary B.8. O

Remark 4.17 In the third part of the proof, the fact that the quotient G is residually nilpotent
implies that it is the quotient by the whole of I',(WB3), which is thus normally generated by
o7 and opop . This also means that £(WB3) 2 £(G), which is easy to compute completely; see
Corollary B.8.

4.5 Partitioned virtual, welded and extended welded braids

We now turn our attention to partitioned virtual and welded braids, which are defined exactly in
the same way as partitioned braids have been in Definition 3.2.
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Figure 4.5 Disjoint-support representatives for two of the generators of the abelianisation of the
extended welded braid group wB,, for n > 3. The supports are shaded in green and blue respectively.

4.5.1 Basic theory

Let us consider the groups vB,,, wB,, and wB,,. Each one is endowed with a canonical projection
7 onto &,, (we use the same notation in the three cases). One can think of it as the replacement
of every crossing in a diagram by virtual ones (and forgetting the mark points for extended welded
braids); in terms of group presentations, it sends both ¢; and 7; to the transposition (i,7 + 1), for
each ¢ (and it kills the p;).

Definition 4.18 Let n > 1 be an integer, and let A = (ny,...,n;) be a partition of n. The
corresponding partitioned virtual braid group is:

vBy =71 &)\ =1 (6, x - x G,,) CVB,.

We define similarly the partitioned welded braid group wBy := 7 1(&)) and the group of \-
partitioned extended welded braid group wB) = 77 1(&,).

When working with virtual (or welded) braids, some things are made easier by the fact that the
canonical projection onto &,, splits, so that vB,, 2 vP,, x &,, (resp. wB,, = wP,, x &,,). This
works for partitioned braids too, since this splitting restricts obviously to a splitting of vB) — &y
(resp. of wB) — &), so that:

vB) ZvP, x G,, (4.3)

and likewise for welded braids. Extended welded braids behave much in the same way: the
decomposition wB,, = wP,, x W,, restricts to a decomposition:

V~VB)\ = WPn X W)\, (44)
where W) denotes the subgroup (Z/2)16y of W,, = (Z/2)16,,.
Our analysis of vB,,, wB,, and wB,, will rely on the following classical results (see also §A.1.3):

Proposition 4.19 The group vP,, (resp. wP,,) is generated by the elements x;; (1 <i#j<n)
depicted in Figure 4.6 and vaLb (resp. WP‘;"Lb) is free on the classes of the xij.

Figure 4.6 The standard generators Xij of pure virtual and welded braid groups.

The proof of Lemma 3.3 can be adapted easily to the present context, giving:

Lemma 4.20 Let A = (nq,...,n;) be a partition of an integer n > 1. Then vB) (resp. wB) ) is
the subgroup of vB,, (resp. wB,,) generated by:
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e The o, and the 7, for 1 < a < n such that o and o+ 1 are in the same block of \.
o The xag, for 1 < a # B < n such that o and 8 do not belong to the same block of A.

Also, wBy, is the subgroup of wB,, generated by the same set of generators, together with the pq,
for all a < n.

We can use this to compute abelianisations:

Proposition 4.21 Let A = (ny,...,n;) be a partition of an integer n > 1, and let I be the number
of © such that n; > 2. Then:

VB = wB3” = (2/2)" x 2" x 207 and WBSP = (7,/2)M 2+,

Precisely, the abelian group vB3" (= wB3") is generated by:

o For eachi € {1,...,1} such that n; > 2, one generator s; (resp. t;): this is the common class
of the oo, (resp. the 7o) for a and o+ 1 in the i-th block of A.

o For each i,j € {1,...,1} such that i # j, one generator xz;;: this is the common class of the
Xap for o in the i-th block of A and B in the j-th one.

The t; are a Z/2-basis of the first factor, the s; are a Z-basis of the second one, and the x;; are a
Z-basis of the third one.

A (Z,/2)-basis of WB3P = (WB3Y> ®Z/2) x (Z/2)" is given by the same list of generators (which are
of 2-torsion in WBS®), together with:

e For eachi € {1,...,1l}, one generator r;: this is the common class of the p, for o in the i-th

block of \.

Proof. We show our first statement for virtual braids; the exact same proof works for wB .

Applying Lemma 1.9 to the decomposition (4.3), we deduce that vB3}> = (vP®)g, x &3°. On
the one hand, 62&,’ = 7/2 (generated by the class of any transposition) for all ¢ such that n; > 2,
so that G5 = (Z/2)! admits the t; as a Z/2-basis. On the other hand, vP2" is freely generated
by the set X of the X,3 with 1 < a # 8 < n, on which &) C &,, acts by permuting the indices.
Thus (vP2")g, is free on the set X/G,. The latter is exactly the set of generators x;; described
in the statement, plus one additional element for each i such that n; > 2, which is the common
class z; of the xqp for o and 3 in the i-th block. Thus we get the decomposition of the statement,
with a slightly different basis (the x; instead of the s;). The relation xo,a+1 = Ta0q implies that
s; = x; — t;, which is the change of basis we need to finish proving our first statement.

Let us now describe \7\7B§\b7 using a similar computation. We deduce from the decomposition (4.4)
that wB> = (WP2")y,, x WP, On the one hand, the group Wy = (Z/2) 1 &) is isomorphic
to the product of the (Z/2)1&,,,, whose abelianisation is Z/2 (generated by r;) if n; = 1 and
Z.)2 x 7.2 (generated by r; and s;) if n; > 2. Thus Wb = (Z/2)'F" gives a first factor in our
formula. On the other hand the action of the generator p. of (Z/2)" C Wy on wP2" is by fixing
all the X4 for 8 # 7 and sending all X, t0 —X,,. One can check this from the presentation

of Proposition A.9: for instance, x12 = 7101, and p1x12p1_1 = 01_171 = X1_21- As a consequence,
(VPZb)(Z/Q)n >~ vP**®7Z/2 is a free Z/2-vector space on the Xap> 00 which &,, acts by permutation

of the indices. Since (WP2")y, = (WPZb)(Z/2)IG)\ = ((VP?Lb)(Z/Q)n)GA, the rest of the proof works
exactly as for the previous case, except that we work with coefficients in Z/2. O

4.5.2 The lower central series

The remainder of the section is devoted to the proof of the following:

Theorem 4.22 Let n > 1 be an integer, and let A\ = (ny,...,n;) be a partition of n. The lower
central series of the partitioned virtual (resp. welded) braid group vB)y (resp. wB) ):

o stops at Iy if ng >4 for all i, or if nj =1 for exactly one j and n; > 4 for all i # j.
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e does not stop in all the other cases.
The lower central series of the partitioned extended welded braid group wB )y :

o stops at Is if n; = 4 for alli.
o does not stop in all the other cases, except if A = (1), for wB; = Z/2.

Proof. First suppose that n; > 4 for all i. As in the proofs of Propositions 4.9 and 4.11, we show
that any pair of generators of VBib (resp. of wBib, resp. of wB3P) may be represented by a pair
of elements of the group having disjoint support (in the sense of Definition 4.4 for virtual braids,
and of the equivalent Definitions 4.1 and 4.4 for welded braids), which therefore commute by Facts
4.3 and 4.7. The generators we need to consider are listed in Proposition 4.21: they are the s;,
the ¢;, the z;; and (in the case of extended welded braids) the r;. In each case, it is clear that
the hypothesis n; > 4 allows us to choose lifts with disjoint support among the generators of vB)
(resp. of wBj, resp. of wB)) from Lemma 4.20. Indeed, the class of any such generator depends
only on the blocks to which the indices involved belong, and the support of each generator contains
at most two indices. For instance, if o denotes the minimum of the i-th block, s; and t; can be
lifted respectively to o, (whose support is {a, @+1}) and to 7442 (whose support is {a+2, a+3}).

If A has one block of size 2 or 3, then there is a surjection (defined by forgetting all strands except
for those corresponding to this block) from vB), onto vBy or vBgs, thus we can use Lemma 1.1 to
deduce from Proposition 4.9 that its lower central series does not stop. The same argument applies
to welded braids (resp. to extended welded braids), using Proposition 4.11 (resp. Proposition 4.16)
instead of Proposition 4.9.

Similarly, if there are two blocks of size 1, then both vB, and wB) surject onto vB; 1 = wB;; =
vP, & F5, whose lower central series does not stop. Under this hypothesis, wB, surjects onto
wBi1 1 = Fy % (Z/2)?, whose lower central series does not stop either; see Remark 4.29.

Finally, we treat separately the tricky cases when there is exactly one block of size 1, all other
blocks having size at least 4. For virtual and welded braids, we show in Proposition 4.26 and
Proposition 4.24 that the lower central series stops at Is. For extended welded braids, the fact
that it does not stop is Proposition 4.28. O

Remark 4.23 (Blocks of size 3) If A has blocks of size 3 (say, n; = 3), the lower central series
of G, (with G = vB, wB or wB) does not stop: the disjoint support argument fails, since t;
and s; do not have lifts with disjoint support. However, this failure is limited, and the argument
can still be applied to understand the lower central series of G5, from the one of G, (where p
is any partition). Precisely, the generators ¢; and s; of the Lie ring do not commute with each
other, but they do commute with every other generator. Using the canonical split injection of G3
into G3 ,, we see that ¢; and s; (together with ry for extended welded braids) generate a copy of
L(G3), which is then a direct factor of £(G3 ). If all the blocks of ;1 have size at least 3, we can
be even more precise: then the 2(I — 1) elements x1; and x;; must be central. In this case, we get
an isomorphism of Lie rings:

£(G ) = £(Gs) x 207 x L£(Gy).

Moreover, £(G3) is well-understood (see Propositions 4.10 and 4.12, and the proof of Proposi-
tion 4.16), so this allows us to compute £(G)) completely if all the blocks of A have size at least 3.

Proposition 4.24 Let p be a partition of an integer n into blocks of size at least 4. Then the
lower central series of wB1 ,, stops at I.

Proof. The proof is similar to that of Proposition 3.8, the key input being Lemma 4.25, which is
the analogue of Lemma 3.10 in the classical case.

Let us denote by A = (1, ng,...,n;) the partition (1, 1) of n+ 1. The canonical morphism wB,, —
wB, , induces a morphism:

wBI® = wB,, /I = WB1 ,,/ I,
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where the equality on the left comes from the fact that all the blocks of u have size at least 4.
This implies that among the generators of wB; , from Proposition 4.20, the ones coming from
wB,, pairwise commute. Moreover, this also implies that x5 and x. g have the same image x;;
in wBy ,/I'x if a and o are in the i-th block of X and  and 8’ are in the j-th one, if 7,5 > 2.
Similarly, o, and o, (resp. 7, and 7,+) have the same image s; (resp. t;) in this quotient if o and
o’ are in the i-th block of A, with ¢ > 2. Finally, a generator of the form x1, (resp. xa1) is also
sent to a class xq; (resp. z;1) modulo I's, depending only on the index i > 2 of the block containing
a. Indeed, let us suppose that « and « + 1 are in the i-th block of A. This block has size at least
4, so t; has a representative 73 in wB , whose support does not contain «, which then commutes
with x14. But ¢; is also the class of 7o, and 7o X1aTa = X1,0+1- Thus X1, = tiX1ati = X1,a+1, and
the same argument shows that X,; = X411

In order to prove our statement, we need to show that the xy; and the x;; commute with each
other, and with all the other generators of wB; ,,/I'o. The latter assertion is deduced from the
fact that the pairs of generators involved have lifts to wB; , with disjoint support. The former
one is a bit trickier, and requires the use of Lemma 4.25 below. Precisely, let i,j > 2 with i # j.

e x;; and x;; always commute, since xo1 commutes with xg;, for every a, 3.

o We have seen that x;; commutes with x;;. Thus, if a is in the i-th block and 3 in the
J-th block of X, the morphism (xi2, x23,x13) = WB1 /I induced by 1 — 1, 2 — a and
3 — [ factors through the quotient by [x12, x23], which is abelian, by Lemma 4.25. Thus x4,
commutes with x1;.

o x;; and x1; are also in a homomorphic image of (x12, X13, X23), Where the image x;1 of x12
commutes with the image x;; of x13. Thus, again by Lemma, 4.25, they commute.

o Finally, z;; and z1; are the classes of x1 and 1,41 respectively, with @ and a + 1 both in
the i-th block of A. Again, these are in a homomorphic image of {x12, x23, X13), Where the
image z1; of x12 commutes with the image X, 441 = Ta0a = ti8; of x13. Thus x;; commutes
with T1i-

Finally, we have shown that all the generators of wB; /I, commute with each other, thus it is
abelian, and Iy, = I'y for wBy ;. O]

Lemma 4.25 Let G be the subgroup (x12,X23, X13) of Aut(F,,). The subgroup I'x(G) is normally
generated by [x12, X23] (resp. by [x12, X13]). In other words, the quotient of G by the single relation
[X12,X23) =1 (resp. [x12,x13] = 1) is abelian.

Proof. We know that x13 already commutes with xs3 in G. Moreover, x12 commutes with x13X23.
Thus, x12 and x23 commute in a quotient of G if and only if x12 commutes with y13 = (X13X23)X2_31,
and then the quotient is abelian. O

The above proof can be adapted to work for virtual braids too, with an appropriate modification
of Lemma 4.25, given by Lemma 4.27 below.

Proposition 4.26 Let p be a partition of an integer n into blocks of size at least 4. Then the
lower central series of vB1 , stops at I5.

Proof. We use the same notations as in the proof of Proposition 4.24. The first part of that proof
adapts verbatim to the setting of virtual braids. First, the canonical homomorphism

vB2 =vB, /T, — vB1, /T

implies that those generators of vB; , that come from vB, pairwise commute in the quotient
vB1 ,/I'%. It also implies, just as above, that the images in vB; ,,/I's of the generators of vB ,
from Lemma 4.20 depend only on the blocks to which « and £ belong. We therefore just have to
show that the generators x1; and xj; (for ¢,j > 2) commute with each other, and with the other
generators of vBy ,/I'. The latter follows from the same disjoint support argument as in the
proof of Proposition 4.24, so we are left with showing that they commute with each other.

There are four cases to consider, as in the proof of Proposition 4.24, and they may all be treated
analogously. Let G denote the subgroup of the pure virtual braid group vPgs generated by the
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elements x12, x13 and x23. In each case, we define a homomorphism 6 : G — vB; ,/I'w such
that two of the elements x12, x13 and x23 are sent to the elements of vB; ,,/I that we wish to
show commute, and the third is sent to an element that commutes with both of them. It then
follows from Lemma 4.27 below that the first two elements commute. In detail, the four cases are
as follows, for 4,7 > 2 with i # j:

o We wish to show that z;; and x;; commute. Let 6 be induced by 1 — «, 2 — B and
3 — 1, with o in the i-th block and 3 in the j-th block of A. The image of x12 is z;;, which
commutes with z;1 = 6(x13) and xj1 = 6(x23), as we have deduced above from a disjoint
support argument.

o The case of z1; and x1; is similar to the previous one, the roles of 1 and 3 being exchanged.

e Both z;; and x1; commute with x;;, and again the same argument implies that they commute.

o Finally, z;; and z;; are the classes of x1 and x1,q+1 respectively, with & and a4+ 1 both in
the i-th block of A. Since z;; and z1; both commute with X, ,4+1 = tisi, we can apply once
again the same argument, 6 being induced by 1 +— 1, 2+ « and 3 — «a + 1.

We have therefore shown that all generators in a generating set for vB; ,,/I's pairwise commute.
Hence this quotient is abelian, in other words, I = I for vBq . O

Lemma 4.27 Let G be the subgroup of vP3 generated by the elements x12, x13 and x23. Then
any two of the three relations

[X12,X23] =1 [X13,X23] =1 [X12,X13] =1

imply the third. In other words, the quotient of G by any two of these relations is abelian.
Proof. The elements x12, x13 and Y23 satisfy the relation
1 -1, -1 _
X12X13X23X12 X13 X23 = 1 (4.5)

in vP3; see [Bar04, Th. 1]. If we impose any two of the three relations above, then one of the three
generators becomes central, and (4.5) becomes the relation stating that the other two generators
commute. O

Proposition 4.28 For any partition (v of an integer n > 1, the lower central series of WB1 ,, does
not stop.

Proof. Forgetting every block of ;i save one induces a surjection from wB; , onto WB,, for
some m > 1, so it is enough to show that the lower central series of WBy ,, does not stop by
Lemma 1.1. Let us consider WB1 ., as a subgroup of Aut(Fi.,,). One can check on the generators
of wB1 ,, that the automorphisms in wB; ,, preserve the normal subgroup of Fi,, generated
by the xax;il for 2 < a < m, together with the :Ei for 2 < a < m+ 1. As a consequence, the
quotient of Fy4,, = Z*F,, onto Z*Z/2 induces a well-defined morphism wB1 ,,, — Aut(Z*Z/2).
Let us denote again by z1 and x5 the generators of Z xZ/2, which are the images of x1,x2 € F14,,.
The image G of WB1,, in Aut(Z = Z/2) is generated by pi1, x12 and x21, which are defined by
the same formulas as the corresponding elements of Aut(F2), only with x5 having square 1. We
note that xo21 and x12 are conjugation by x; and by z2 on Z x Z/2 respectively, so they generate
Inn(Z « Z/2) = Z + Z/2, which is normal in Aut(Z = Z/2), whence also in G. Moreover, p; is not
an inner automorphism and, since p? = 1, we have:

G = (x21,X12) X (p1) 2 (Z*Z)2) x (Z/2).

Conjugation by p; fixes x12 and sends xo1 to its inverse. Hence the quotient of G by xi2 is
isomorphic to Z x (Z/2), whose lower central series does not stop by Proposition B.16. O

Remark 4.29 If m = 1, then the same kind of calculation can be applied directly in Aut(Fs) to
see that wB1 1 = WPy 2 Fy x (Z/2)?, where each generator of (Z/2)? fixes one of the generators
of Fy, and sends the other one to its inverse. This group surjects onto (Z x (Z/2)) x (Z/2) (by
killing one of the generators of Fy), so its lower central series does not stop.
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5 Variants on partitioned welded braids

Here we study our most general version of a group of partitioned welded braids, built from config-
urations of points, oriented circles and unoriented ones.

5.1 Pure bipartite welded braids

We begin with introducing the pure version of this group, obtained from configurations of points
and oriented circles. Namely, let & and m be integers. The pure bipartite welded braid group
wP(k,m) is defined as the fundamental group of the configuration space Fy st (D?). In order to
study it, we identify this group with a subgroup of wP,,. This is done by considering a map
between configuration spaces. Precisely, we consider the map from the above configuration space
to Flutm)st (D3) obtained by replacing each point in a configuration by a small (oriented) circle.
This can be done explicitly: one can replace each point P of a given configuration by the horizontal
circle of center P whose diameter equals half the distance between P and the rest of the points
and circles of the configuration.

Proposition 5.1 The above map identifies wP(k,m) with the subgroup of WPy, generated by
the Xag, for 1 < a # B < n such that B > k.

Proof. Using Lemma 5.2 below, we get a commutative diagram with (split) short exact rows:

P.(D3,) —— wP(k,m) —» wP,,

[ |

e s WPiim —» WP,

where the left-square is induced by the obvious commutative square at the level of configuration
spaces. We want to show that the middle vertical map is injective. Using the Five Lemma, we see
that we only need to show that the left vertical map is injective or, equivalently, that the dashed
one is. Recall that Py (D3)) = (F,,,)¥ via mps ; see Proposition 6.9 below. Moreover, by unravelling
the definitions, we see that our map P (D3 ) — WPy, sends the generator x; of the i-th copy of
F,, (corresponding to the i-th point passing through the j-th circle, with ¢ < k and k < j < k+m)
to Xij € WPg 1. It follows directly from the interpretation of wPj ., as a group of automorphism
of the free group Fji,, (see Theorem A.12) that for fixed ¢ < k, the x;; for all k < j < k+m
generate a free group, and that these copies of F,,, commute in wPy_,,, so that our map must be
an isomorphism onto its image. As a consequence the map wP(k,m) — WPy, under scrutiny is
injective.

Now, let G be the subgroup of wPj,,, generated by the x.g, for 1 < a # < n such that
B > k. All these elements are seen to be images of elements of wP(k,m), so that G C wP(k,m).
Moreover, G contains the image of Py (D3,) (described explicitly in the above reasoning), and all
of wP,,, so that G is equal to the whole of WP (k,m) = Pj(D3,) x wP,,, and the proposition is
proved. O]

We denote by D? the complement of an n-component unlink in the interior of the unit 3-disc.

Lemma 5.2 The canonical map Fj st (D?) — Fs1(D3) induces a split short exact sequence:

i -~
Py(D3) —— wP(k,m) — wP,,,

where the kernel Py (D3) identifies with k copies of the free group m(D3,) = F,,.
Proof. By [Pal60, Th. C], the canonical map p: Fy st (D?) — F,s1(D?) is a locally trivial fi-

bration. Its fibre identifies with Fj (D3 ), where D?, denotes the (open) 3-ball with n unlinked,
unknotted circles removed. Moreover, this fibration splits up to homotopy, that is, there exists
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51 Fpst (D3) — Fyumst (D?) such that p o s ~ id. Namely, one can construct a (smooth) isotopy
equivalence g between D3 and a proper subspace D of D3. This is an inverse up to isotopy of the
inclusion ip : D — D3. Then one can fix a configuration cy of k points outside of D, and let s
send a configuration ¢ of circles to g(c) Ll ¢g. The isotopy ip o g ~ id then induces a homotopy
pos ~id, as required. As a consequence, the long exact sequence in homotopy breaks into split
short exact sequences, and the one between fundamental groups is exactly the one of the lemma.
Moreover, the identification of the kernel comes directly from the usual identification of braids on
manifolds of dimension at least 3; see Proposition 6.9 below. O

Corollary 5.3 The abelianisation WP (k, m)" is free abelian on the classes of the Xas, for 1 <
a # B < n such that B > k.

Proof. By Proposition 5.1, these classes generate wP(k,m)*”. Moreover, the canonical map
wP(k,m)* — wP3",, sends these generators to linearly independent elements of wP%",, (see
Proposition A.8), so that they are a basis of wP(k, m)ab.

5.2 Tripartite welded braids

Given three integers np, ng, and ng, we define the group of tripartite welded braids by:

wB(np,ng, ,ng) =1 (anu(ns++ns)gl (D*)/(Snp X G, X Wns)> .

In other words, we consider the fundamental group of the configuration space of np points, ng,
oriented circles and ng unoriented ones, where all the circles are supposed unlinked and unknotted.

In order to study it, we identify this group with a subgroup of wB,,, where n = np +ng, + ns.
Since wB,, identifies with a subgroup of Aut(F,,) (see Theorem A.12), we will then be able to
identify tripartite welded braids with automorphisms of F,,, and this point of view will come in
handy for doing explicit computations.

Let us consider the map from F,, , sy Fns)St (D?) to Fpst (D3) defined, as above, by replacing each
point in a configuration by a small oriented circle. By factorisation through quotients by the ap-
propriate group actions, we get a map between the configuration spaces of which wB(np,ns, ,ns)
and wB,, are the fundamental groups (this boils down to replacing points in configurations by
small circles, and forgetting orientations of circles).

Proposition 5.4 The above map identifies wB(np,ns, ,ns) with the subgroup of WB,, with n =
np +ns, +ns generated by:

o The 7o for a #np,np+ng, and 1 < a < n.
o The po for np +ns, <a<n.
o The Xag, for 1 < a # B < n such that B > np.

Proof. Consider the following commutative square of maps between configuration spaces:

F”P:(”S++HS)S1 (D3) — an’(ns++ns)81 (D3)/(6n1” X 6715+ X Wns)

l |

Fos1(D?) Fos1(D3) /W,

where the horizontal maps are regular coverings. These induce the left square of the following
commutative diagram, whose rows are exact (thanks to the usual theory of coverings):

wP(np,ngs, +ng) —— wB(np,ns, ,ng) —» &,, x Gns, X Whg

| | |
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The vertical map on the right is obviously injective. By Lemma 5.1, the one on the left is also
injective. So, by the Five Lemma, the middle vertical map wB(np,ngs, ,ns) — wB,, is too.

Now, let G be the subgroup of wB,, generated by the elements listed in the statement. First, one
easily sees that each element in the list is the image of some element of wB(np,ns, ,ns), so that
G C wB(np,ns, ,ns). Moreover, G contains wP(np,ng, + ng) by Proposition 5.1, and it also
contains G,,, x 6n5+ x Whg, which is generated by the 7, and the p, contained in G. Thus, G is
all of their semi-direct product wB(np,ns, ,ns), and our statement is proved. O

5.3 Partitioned tripartite welded braids

Let us now introduce a partitioned version of this group. In order to do this, we use the canonical
projection 7 from wB(np, ns, ,ns) onto &, , xSy, xSy, which identifies (using Proposition 5.4)
with a restriction of 7 : wB,, - &,,.

Definition 5.5 Let Ap, Ag, and Ag be partitions of integers np, ng, and ng respectively. Let
A = ApAg, Ag be their concatenation, which is a partition of n = np +ng, +mns. The blocks of A
will often be identified with blocks of Ap, Ag, and Ag. The associated group of tripartite welded
braids wB(Ap, As, , As) is defined by:

WB(Ap,As,, As) =7 (81) =7 (G, X Gry, X 6ry) CWB(np,ns,,n5) C WB,.

A direct adaptation of the proof of Lemma 3.3 to this context gives:
Lemma 5.6 The group wB(Ap, A5, As) identifies with the subgroup of WB,, generated by:

o The 7o for 1 < a < n such that a and o+ 1 are in the same block of \.

e The 04 for np < a < n such that a« and o+ 1 are in the same block of \.

o The py fornp +ng, <a<n.

o The Xap, for 1 < a# B < n with § > np, such that o and B are not in the same block of A.

We can compute the abelianisation of the group wB(Ap, s, ,As), like we did for partitioned
groups before:

Proposition 5.7 Let Ap, A\s, and \g be partitions of integers np, ns, and ng respectively, of

respective length lp, ls, and ls. Let us denote by lp, /S+ and Uy the number of blocks of size at

least two in each of these partitions. Let also ApAs, As = A = (n1,...,n;) be their concatenation,
of length l =lp + s, +1s, and with I =l + lig+ + U blocks of size at least two. Then:
WB(Ap, As, As)™” = ZV x (2/2)M,

where N =lg, +1s,(1—1) and M = 1"+ 15 +Isl.

Let us denote by Ip the set {1,...,lp} of indices corresponding to blocks of Ap, by Is, the set
{lp+1,..,lp+1s,} and by Ig the set {lp + s, +1,...,1}. With these notations, a basis of the
first factor is given by:

o For each i € Isy such that n; > 2, one generator s;,
o Foreach j € Isy and each i € {1,...,1} such that i # j, one generator x;;.

and a Z./2-basis of the second factor by:

o For each i € Ig such that n; > 2, one generator s;,

o For eachi € {1,...,1} such that n; > 2, one generator t;,

e For each i € Ig, one generator r;,

o For each j € Is and each i € {1,...,1} such that i # j, one generator x;;.

The generators are obtained as follows:

o s; (resp. t;) is the common class of the o, (resp. 7o) for a and a+ 1 in the i-th block of \.
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e 71; is the common class of the py for a in the i-th block of \.
o x;; is the common class of the xap for o in the i-th block of A and B in the j-th one.

Proof. The proof is very similar to that of Proposition 4.21, which is a particular case of the present
general statement. Namely, we apply Lemma 1.9 to the decomposition:

WB()\P,/\S+,>\5) = wP(np,nS+ +Tls) X (6)\p X 6)\S+ X W)\S).

The abelianisation of the second factor identifies with (Z/2)" s, generated by the generators t;
and r; of the statement. The abelianisation of wP(np, ng, + ng) is free on the classes of the xap
with 1 < a # < n such that § > np by Corollary 5.3, and the action of Gy, x 6)\5+ x Wy is
by permutation of the indices. We note that this latter group identifies with (Z/2)"s x &, where
Sx =6i,p X Gig, X6, acts on (Z/2)" through the projection on its third factor (whose action
permutes the factors). Thus, the coinvariants we need to compute are:

(WP(”Pa ns, + ”S)ab)(z/z)ns ST = ((WP(”Pv”& + "S)ab)(zp)ns)GA .

The computation then continues exactly as in the proof of Proposition 4.21. In particular,
(WP(np,ns+ + ng)ab)(z/g)ns is a product of factors Z and Z/2 generated by the Xaps Tespec-
tively with np < 8 < np +ng, and with 8 > np + ng,. From the classes of these generators in
the coinvariants, we get the generators x;; of the statement, and the generators s;, by the same
change of basis as in the proof of Proposition 4.21. O

From a geometrical point of view, the generators described in Proposition 5.7 correspond to the
motions of points and circles in the 3-ball represented in Figure 5.1.

el Yelf >
° ° O o o [3 =g A

\_j \_j \_/ Type 5 \_/
Type 1 Type 2 Type 3 Ti

ti (Z € IP) Si t; (Z ¢ IP) Type 4 Type 6
zi; (i € Ip) zi; (i,5 € Is, Ulsg)

Figure 5.1 The six types of generators for wB(\p, )\S+,)\5)ab from Proposition 5.7. Types 2—4 each
have two sub-types depending on whether the circles are (both) oriented or (both) unoriented. The
circle in type 5 must be unoriented. Type 6 has four sub-types, depending on which of the circles are
oriented. Type 2 generates a Z summand if both circles are oriented. Types 4 and 6 generate a Z
summand if the non-moving circle is oriented. All other types generate a Z/2 summand.

5.4 The lower central series

We now study the lower central series of wB(Ap, As,,As). In order to do so, we need to apply
disjoint support arguments. These arguments are best understood by thinking of motions having
disjoint support in the 3-ball, and the reader is advised to keep this point of view in mind. However,
writing down precise arguments and explicit calculations is much easier when dealing with auto-
morphisms of free groups, so we mainly identify elements of wB(Ap, As, , Ag) with automorphisms
of free groups in our proofs, using Proposition 5.4 and Theorem A.12.

The remainder of this section is devoted to the proof of the following theorem:
Theorem 5.8 Let Ap, Mg, and Ag denote partitions of integers np, ns, and ng respectively, of
respective lengths Ip, ls, and ls. Let also ApAs As = A = (n1,...,mny) be their concatenation, of

length I =1p + s, +1s. We denote by Ip the set {1,...,lp} of indices corresponding to blocks of
Ap, by Is, the set {lp +1,...,lp +1s, } and by Is the set {lp +1s, +1,...,1}.

Let us suppose that wB(Ap, s, ,Ag) is not trivial, i.e. (Ap,As,,As) is not among (@,D,9D),
((1,1,...,1),2,9) and (&,1,). The lower central series of the group wB(Ap, As,,As):
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o stops at Iy if n; # 2 for all i € Ip and n; > 4 for all i € Is, U s, save for at most one
1 € Is, such that n; = 1.

o stops at I3 if n; = 2 for at least one i € Ip, Is, = &, Is # & and n; > 4 for alli € Is.

o does not stop in all the other cases, except for wB(2,2,1) = wB, =2 Z/2.

Proof. The first statement is Proposition 5.12, which is a generalisation of Propositions 5.9, 5.10
and 5.11. The second one is Proposition 5.17.

Among the remaining cases, here are the ones for which we can deduce our conclusion directly from
the calculations above (Propositions 4.11 and 4.16), by exhibiting a quotient of wB(Ap, As, , As)
whose lower central series does not stop:

e If Ag has one block of size 2 or 3, then it surjects onto wBy or wBj3.

o If \g has at least two blocks of size 1, then it surjects onto WB; 1 = WPy = Fy x (Z/2)2.
o If Ag, has one block of size 2 or 3, then it surjects onto wBy or wB3.

o If Ag, has at least two blocks of size 1, then it surjects onto wB; ; = wPj.

In all of these cases, Lemma 1.1 allows us to conclude that the lower central series of WB(Ap, Ag, , As)
does not stop.

Moreover, if Ag has one block of size 1 which is not the only block of A, then Proposition 5.13
ensures that the lower central series of wWB(Ap, As, , As) does not stop. Then the only remaining
case is the one where Ap has at least one block of size 2, Is, is not empty and the blocks of Ag
are of size at least 4. This last case is covered by Proposition 5.14. O

5.4.1 The stable case

We begin with the cases where all the blocks of A are big enough to apply a disjoint support
argument:

Proposition 5.9 The notations being as in Theorem 5.8, suppose that n; > 3 for all i € Ip and
n; =>4 for alli € Is, Uls. Then the lower central series of the group wB(Ap, As,,As) stops at
Is.

Proof. The proof is an extension of that of Theorem 4.22. By Corollary 2.6, we just have to show
that any pair of the generators of wB(Ap, As, , Ag)*" listed in Proposition 5.7 (and illustrated in
Figure 5.1) has a pair of lifts in wB(Ap, As,,As) with disjoint support. The assumption that
n; 2 3 foralli € Ip and n; > 4 for all i € Ig, Ulg is exactly what we need for that, as one sees by
direct inspection. For instance, a generator z;; has a lift whose support is {c, 5} (namely, xap),
for any choice of « in the i-th block and (8 in the j-th block of A. Thus any xj; has a lift whose
support is disjoint from some lift of x;;, provided that the i-th and j-th blocks of A both have size
at least 2. O

5.4.2 Blocks of points and oriented circles of size 1

The result in the stable case of Proposition 5.9 can be extended to the case where Ap has blocks
of size 1:

Proposition 5.10 The notations being those of Theorem 5.8, if n; > 4 for all i € Is, U Is and
Ap has no blocks of size 2, then the lower central series of wWB(Ap, As,,As) stops at I.

Proof. We argue like in the proof of Proposition 4.24.

Let us write Ap = (1,...,1, up), where there are k ones and each block of pp has size at least 3.
There is an obvious homomorphism wB(pp, As, , As) = WB(Ap, As, , As), which induces a homo-
morphism

wB(up, s, , As)™ = wB(up, As, ; As)/Too — WB(Ap, As,, As)/ T (5.1)
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The equality on the left-hand side comes from Proposition 5.9. Similarly, for each block 7 of
the partition Ag, U Ag, there is an obvious homomorphism of the form wB((1,...,1),n;,9) —
wB(Ap,As,,As) or wB((1,...,1),9,n;) = wB(Ap, As, , As), inducing a homomorphism

wB((1,...,1),n;,9)* = wB((L,...,1),1;,9) /T — WB(Ap,As,,As)/Is

5.2

or wB((1,...,1),2,n;)** = wB((1,...,1),2,n;)/Tsc — WB(Ap,As,,As)/Is- (5:2)
The equality on the left-hand side comes from the fact that the disjoint support argument used
in the proof of Proposition 5.9 also works for showing that I = [, in this particular case where
there is only one block of circles.

Let us consider the generators 7o, 0, pas Xas of WB(Ap, A5, ,As) from Lemma 5.6. Using Propo-
sition 5.7, we deduce from the existence of the morphisms (5.1) and (5.2) that their classes modulo
I', depend only on the blocks to which o and 3 belong. In other words: if o and o’ belong to the
same block of the partition, then o4 = 0o in WB(Ap, As,,As)/I', etc. Once we know this, it is
easy to use a disjoint support argument to see that all of these generators commute pairwise, with
the possible exception of xog and xap, where 1 < o < k (so it corresponds to a block of points of
size 1) and where 3 and ' lie in distinct blocks of As, UXg. We deal with these as follows. Let us
suppose that # and ' both lie in Ag, (the argument in the other cases is similar). Consider the
“adding strands” homomorphism

wB(1,(1,1),9) — wB(\p, /\S+a)\S) —- wB(A\p, )\S+,/\S)/Foo (5.3)

induced by 1 = «, 2 — S and 3 — 3. We know that the images of the elements y13 and a3
of the domain commute in wB(Ap, As, ,As)/Is. Thus the homomorphism (5.3) factors through
the quotient of the left-hand side by [x12, x23]. Then Lemma 4.25 implies that the image xqg3
of x12 commutes with the image xap of x13 in WB(Ap, A5, ,As)/I's. We have now shown that
all the generators of wB(Ap, As, ,As)/I s commute pairwise, so it is abelian. Thus I = Iy for
WB()\p,)\S+7>\5). O

The result in the stable case (Proposition 5.9) can also be extended to the case where Ag, has one
block of size 1, thus generalising Proposition 4.24:

Proposition 5.11 The notations being as in Theorem 5.8, suppose that n; > 3 for all i € Ip and
n; 2 4 for alli € Is, Ulg, save for one i € Is, such that n; = 1. Then the lower central series of
the group wB(Ap, As, ,As) stops at I.

Proof. Up to some permutation of the blocks, we can suppose that As, = (1, ) for some partition
1t whose blocks have size at least 4. Then, as in the proof of Proposition 4.24, we have a morphism:

wB(Ap, 11, As)* = wB(Ap, 11, As)/Te — WB(Ap, s, , As) /I,

where the first equality follows from Proposition 5.9. Starting from this, the generalisation of the
proof of Proposition 4.24 to this context is straightforward. O

In fact, the same result holds when there are both some blocks of points of size 1 and one block of
oriented circles of size 1, the size of the other blocks being in the stable range:

Proposition 5.12 The notations being as in Theorem 5.8, suppose that n; # 2 for alli € Ip, and
n; =4 foralli € Is, Ulg, save for one i € Is, such that n; = 1. Then the lower central series of
the group wB(Ap, As, , As) stops at I.

Proof. Let us denote by up the partition obtained from Ap by removing blocks of size 1, and by
ps, the one obtained from As, by removing the block of size 1. Then we have two morphisms:

wB(1p, As,, As)™ = WB(up, As,, As)/Toe — WB(Ap, As,, As)/ I,
wB(Ap, s, , As)™ = WB(Ap, ps,, As)/Te — WB(Ap, As,, As)/ I,
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where the equalities on the left come from Propositions 5.10 and 5.11. As a consequence, the
classes of the x.g, the 74, the o, and the p, generating wB(Ap, As, ,Ag) in the quotient by I’y
depend only on the blocks containing « and 8. Indeed, this is obvious when « and § both belong
to blocks of size one, which is the only case where it cannot directly be deduced from the above
description of the abelianisations (Proposition 5.7). As usual, when « is in the i-th block and 8 in
the j-th one, we denote these classes by x;;, t;, s; and r; respectively.

Now, let us consider two generators among these. Most of the time, both of them belong to
the image of one of the morphisms above, whence they commute. When this does not hold, a
disjoint support argument shows that they still commute, except when one of them is x;; for
i € Ip and j € Ig, such that n; = n; = 1, and the other one is either x;, x5 or zy;, for some
k € Is, UlIg different from j. We now show that these commute too, reasoning as in the proof of
Proposition 4.24. Let us denote by « (resp. 3) the only element of the i-th block (resp. the j-th
one), and by ~,v" two distinct elements of the k-th block (which must be of size at least 4).

e x;; and x; always commute, since X3 commutes with x.3.

o x;; and x;, are the images of x13 and x12 by a morphism from (xi2, X23, X13) sending x23
to xy;. Since x;, and xy; are the classes of x.y and x./3, whose support is disjoint, they
commute. Hence we can apply Lemma 4.25 to conclude that z;; and z;; commute.

o Finally, z;; and x;; are also in such a homomorphic image, and we know from the previous
case that z;; and x;; commute, so we can apply Lemma 4.25 again to deduce that x;; and
Zj) commute too.

Finally, we have shown that all the generators of wB(Ap, As, ,As)/I's commute pairwise. Thus
this group is abelian, which means that I'n, = I3 for wB(Ap, s, , As). O

5.4.3 Small blocks of unoriented circles

We already know that if Ag has at least one block of size 2 or 3, then wB(Ap, Ag, , Ag) surjects onto
wB, or wB3, whose lower central series does not stop. The next proposition, which generalises
Proposition 4.28, deals with the case where Ag has at least one block of size 1:

Proposition 5.13 Suppose that A\s has at least one block of size 1, and there is at least another
block in A = ApAs, As. Then the lower central series of wB(\p, As, s As) does not stop.

Proof. The group wB(Ap, As, ,Ag) surjects either onto wB(m,0,1), onto wB(0,m,1) or onto
wB(0,0, (m, 1)), for some m > 1. We need to show that the lower central series of each of these
three groups does not stop. The case of wB(0,0, (m,1)) = WB; ,, has already been dealt with;
see Proposition 4.28. The method used there can be adapted to the other two cases. Indeed, both
wB(m,0,1) and wB(0,m, 1) identify with a subgroup of Aut(F,,+1) consisting of automorphisms
preserving the normal closure N of the xam;il for 1 < a@ < m — 1, so they both project onto a
subgroup G of Aut(F,,11/N) = Aut(F2). In the first case, G is generated by p2 and x12, and
is isomorphic to Z x (Z/2), whose lower central series does not stop by Proposition B.16. In the
second case, G is generated by pa, x12 and x21. Then (xi2,x21) = Inn(F2) & Fy is a normal
subgroup of G, and:

G = (x12, x21) ¥ (p2) = Fa % (Z/2),

where the action of ps fixes x21 and sends xi2 to its inverse. Then the quotient of G by xo1 is
isomorphic to Z x (Z/2), whose lower central series does not stop by Proposition B.16. O

5.4.4 Blocks of points of size 2 with oriented circles

We now turn to the cases with blocks of points of size 2 which have not already been covered. The
following result takes care of a large part of them:

Proposition 5.14 Suppose that Ap has at least one block of size 2, and that s, # @. Then the
lower central series of wWB(Ap, As, , As) does not stop.
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Proof. Since \g, is non-empty, it contains some block of size m > 1. Then wB(Ap, s, ,As)
surjects onto wB(2,m, 0), so it it enough to show that the lower central series of wB(2,m,0) does
not stop. The latter is the subgroup of Aut(Fa,,,) generated by 7, and o, for 3 < a < m+1, x1a
and ya4 for 3 < a < m+ 2, and 7. All these automorphisms preserve the subgroup N normally
generated by the xax;il for 3 < a < m+ 1, as one can check by direct inspection: for instance,
Oa(Ta-1271) = Ta-1(TaTar125)™ = (wa_12;!) - ma(xam;j_l)xgl. As a consequence, they
induce automorphisms of the quotient Fo,,/N = F3. This defines a morphism from wB(2,m,0)
to Aut(F3) sending 7, and o, to the identity, all the y1, to x13, all the x2, to x23, and 71 to 1.
The image of this projection is thus (71, x13, x23) = wB(2,1,0). Moreover, since 23 = T202 and
thus 71x2371 = x13 (see §A.1.4), one easily sees that

WB(27 170) = <X13=X23> X <Tl> = 7% (2/2)7

where the action of G5, which is conjugation by 7y, exchanges the two generators y13 and o3 of
Z2. Thus, this semi-direct product identifies with Z { G5, whose lower central series does not stop
(by Corollary B.27), so neither does the lower central series of wB(2,m,0), as claimed. O

Remark 5.15 One can give a more conceptual argument for the preservation of N by wB(2,m, 0).
Namely, these automorphisms act on Faoi,, = Fy x F,, in a triangular fashion, and the automor-
phisms they induce on F,,, preserve the characteristic subgroup I's(F,,). Then their action on the
quotient FaPb = 7™ factors through the canonical action of &,,, so the projection onto Z identifying
all the generators of F,, is equivariant. Whence a well-defined induced action of wB(2,m,0) on
F2 *x 7 = F3.

Remark 5.16 Concretely, the non-stopping of the lower central series in this case is witnessed by
iterated commutators of elements of Type 4 and Type 1 from Figure 5.1. Here, we are viewing
the pictures in Figure 5.1 as elements of the group G = wB(Ap, s, , Ag) itself, rather than as
elements of its abelianisation G*P = £;.

5.4.5 Blocks of points of size 2 without oriented circles

We now consider the lower central series of wB(Ap, &, A\g). If there are no blocks in Ag, then
we are considering wB(Ap, &, &) = &, ,., whose lower central series stops at I (except if Ap =
(1,...,1), for which wB(Ap, &, @) = {1}). On the contrary, if there are no blocks in Ap, then
we are considering wB(&, &, Ag) = WB,,., whose lower central series has been studied above (in
Proposition 4.22).

Suppose now that there is at least one block in both Ap and Ag. If Ag has a block of size 1, 2 or
3, we already know that the lower central series of wB(Ap, @, Ag) does not stop (see §5.4.3); we
can thus assume that the blocks of \g have size at least 4. Under this hypothesis, Proposition 5.10
takes care of the case where Ap has no block of size 2 (then the lower central series stops). The
remaining case is covered by the following.

Proposition 5.17 Let Ap be any partition having at least one block of size 2 and let Ag be a non-
empty partition whose blocks have size at least 4. Then the lower central series of wWB(Ap, D, Ag)
stops at I3.

Moreover, Lo(WB(Ap, D, Ag)) has a (Z/2)-basis consisting of the [t;, z;;], for i € Ip with n; = 2,
and j € Is, and all the other brackets of two of the generators of wB(Ap, D, \s)*P described in
Proposition 5.7 are trivial in the Lie ring.

Proof. Generators of £L; = wB(\p, &, \g)?" are described in Proposition 5.7 and Figure 5.1. Most
of the pairs of such generators can be lifted to elements of wB(Ap, @, Ag) with disjoint support.
The only ones for which this is not possible are:

e t; and x;; for j € Is and @ € Ip such that n; = 2.

o x;; and xy; for j,k € Is and ¢ € Ip such that n; = 1.
We first use Proposition 5.10 to show that [z;;, z;z] = 0 in the Lie ring. In order to do this, let us
denote by up the partition obtained from Ap by removing the blocks of size 2. Proposition 5.10
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implies that L(wB(up, @, Ag)) is abelian. Since z;; and x;;, are in the image of this Lie ring inside
L(wB(Ap, D, Ag)), their bracket must be trivial.

We now know that L, is generated by the commutator z;; := [ti, mij], for j € Is and ¢ € Ip such
that n; = 2 (note that this also works when Ap does not have blocks of size 2; then there are no
2ij, hence Ly = 0, and we recover the case Is, = @ of Proposition 5.10). Before going further in
our analysis of the Lie ring, let us examine the element z;; (with 4, j as above). If the i-th block is
{o, @ + 1} and B is in the j-th block, z;; is the class of the commutator (ag := [T, Xas), Which is
the automorphism:

Cos ? To — mglxa;vg — ;vglxaﬂxg — .’I;Elxa+1xﬁ — xglxamg,
: -1 -1
ob Totl FH— To+1 — Ty —  TpTalg —  TBTa41Tg

where all the x., with v ¢ {a, a + 1} are fixed. The corresponding motion is drawn in Figure 5.2.
We note that (g = xa+1,g><;§ (which can be seen directly, or deduced from 7o XagTa ' = Xa+1,8)-

Let us turn our attention to L3. It is generated by the commutators of the generators z;; = (up of
Lo with the generators of £4. Since Supp((ag) = {o, a + 1,5} (where 8 can be chosen anywhere
in the j-th block for (.3 to represent z;;), one can choose a lift having disjoint support with (ug
for each generator of £y, save x;, (for k € Ig) and ¢;. If k = j, we remark that x;; does have a
lift commuting with (,g, albeit not for reasons of support. Indeed, it is the class of x,s, which
clearly commutes with (g, since both are automorphisms conjugating =, and z,1 by powers of
the same element z5. Thus the only generators of £3 which are possibly non-trivial are the [¢;, 2;;]
and the [z, z;;] for k # j.

We first show that [z;x, 2;;] vanishes, when k # j. Let v be in the k-th block of A\. Then [z, 2;;]
is the class of the commutator [Xom» Capl- Since (up = XaJrl,ﬁX;é and X~y commutes with xq11,3,
this commutator is equal to [Xa~, x;ﬁﬂ We have seen above that x, commutes with x,3 modulo
I'no. Thus, the class of [Xay, X;é] is trivial in the Lie ring, which means that [z, z;;] = 0.

We now show that [t;, z;;] = 0, using explicit computations. We have:

-1 -1

To 2 Tap1l > TaTay1Zg > TTals
-1 -1

Tayl +  Ta = Ty Tal Ty Tat1lp

TocCozﬂTojl : {

which means that Taga[ﬂ;l = Cojﬁl We also have:

Tq — Zq — :cglzaxg — x,gxazgl,
-1 -1 -1
pg(agpﬁ : Tatl = Tayl + TTat1ly = Ty Tat128
rg atgl — x;l — g

whence pg(agpgl = Q;Bl = TalapT, ' Finally:

[ti, zi5] = [Ta, Capl = P8 Capl = [r5, 2i5] = 0,

where the last equality comes from the above disjoint support argument. This finishes the proof
that L3 = 0.

We remark that the above calculation also implies I's 3 [74,Cap] = Q;BQ, so that z;; = @ is of
order 2 in L. Thus, in order to prove our last claim, we need to show that the z;; are linearly
independant over Z/2. For each fixed choice of j € Is and i € Ip such that n; = 2, we have a
projection from wB(Ap, @, Ag) onto wB(2, &, n;) which induces a morphism between the £, killing
all the zj; save z;;, which is sent to z12. Thus, we only need to show that for n > 4, the element
z12 is non-trivial in Lo(wB(2,@,n)), which is then isomorphic to Z/2. We do this by constructing
one further projection. Elements of wB(2, &, n) are automorphisms of Fa,, preserving the normal
subgroup generated by the 747441 together with the 22 (o > 3). Whence a well-defined morphism
wB(2,9,n) — Aut(Fs x (Z/2)). The image of this morphism is easily seen to be isomorphic to
Wo = (Z/2) 1 &2 (where the images of y13 and xa23 generate (Z/2)? and the image of 71 generates
G3), and the element ;3 = x23X 3 is sent to the generator (1, 1,id) of I';(Ws) (see Proposition B.10
for the calculation of I'y(Ws)). Finally, the morphism induced between the Lie rings sends 215 to
the generator of L£o(W2) = Z/2, whence the result. O
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Figure 5.2 Generators of L3 = I3/T3 for G = wB(\p, @, m), where each block of Ap has size > 2
and m > 4. There is one generator corresponding to the commutator ¢, g, represented by a loop of
the form pictured, for each block of Ap of size exactly 2. This generalises to G = wB(Ap, &, Ag) where
each block of A\g has size > 4, and the generators are indexed by (b, z) where b is a block of points of
size exactly 2 and x is a block of circles.

6 Braids on surfaces

Here, we study the lower central series of surface braid groups and their partitioned versions. This
may be seen as a generalisation of results from §3, where we studied classical Artin braids, that
is, braids on the disc. This is even a wilder generalisation than the one generally found in the
literature: we do not assume that our surfaces are compact or orientable. In particular, they may
have (countably) infinite genus or boundary components. Among all these surface braid groups,
four cases will stand out from the crowd: the braid groups on the sphere S?, on the torus T?, on
the Mébius strip M2 and on the projective plane P2.

6.1 Surfaces

We recall that a surface is a (separable) 2-manifold, which we will not suppose compact or orientable
in general. Such manifolds are well-understood: the classification of surfaces without boundary
has been achieved by Richards [Ric63], and the classification of surfaces with boundary, which is
more complicated, was completed more than fifteen years later by Brown and Messer [BM79].

Remark 6.1 All our manifolds are assumed separable. (And for the avoidance of ambiguity, we
stipulate that manifold means a locally Euclidean, Hausdorff space.) We recall that separability is
equivalent to triangulability; see [Rad25]. Moreover, separability is implied by second countability,
which is equivalent, for connected manifolds, to either metrisability or paracompactness.

For studying braids, we will in fact only need to consider Richards’ classification. Indeed, let S be
any connected surface (possibly with boundary). If we glue a copy of 95 x [0, 00) to S by identifying
0S x 0 with 9S, we obtain a surface S’ without boundary, and it is easy to show that the canonical
injection S < S’ is an isotopy equivalence. Moreover, one can show that an isotopy equivalence
induces homotopy equivalences between configuration spaces and, in turn, isomorphisms between
braid groups. In the sequel, we thus identify braids on S with braids on S’ (or on S — 95). For
instance, braids on the closed disc are identified with braids on the plane. This holds in particular
for braids on one strand, that is, for fundamental groups, whose computation is recalled below in
Proposition 6.4.

Let us briefly recall Richard’s construction of all surfaces, up to homeomorphism; for a detailed
account, the reader is referred to [Ric63], in particular to §5 and §6, especially Theorem 3, therein.

Proposition 6.2 Let S be a connected surface. Then S is homeomorphic to a surface constructed
in the following way:

e Consider the Cantor set K embedded in the sphere S? in the usual manner. Choose some
closed subset X of K, and remove it from S2.

e Choose a finite or countably infinite sequence of pairwise disjoint closed 2-discs in S? — X,
which has no accumulation point outside of X.

o Along each of these discs, perform a connected sum operation with either T? or P2.
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Remark 6.3 At the second step, one can in fact choose an explicit sequence of discs depending
only on X together with the subset X, € X of accumulation points of the sequence of discs; see
[Ric63].

As a direct corollary of Richards’ classification, one can compute fundamental groups of surfaces:

Proposition 6.4 Let S be a connected surface without boundary. Then m1(S) is a free group, except
when S is closed. Moreover, it is of finite type if and only if S is obtained (up to homeomorphism,)
from a closed surface by removing a finite number of points.

Remark 6.5 We see that closed surfaces (that is, compact surfaces without boundary) are singled
out here, and it will be the case later in our study of braid groups; see for instance Proposition 6.25
and Theorem 6.30.

Another immediate corollary of Richards’ classification is the following dichotomy:

Proposition 6.6 Let S be a connected, separable surface without boundary. Then either S can
be embedded into the sphere S%, or it contains the 1l-punctured torus or the Mobius strip as an
embedded subsurface.

In our study of braids, this appears as a trichotomy, between the following cases:

e S is planar, i.e. it embeds into the plane;

e S is the sphere S

e S contains an embedded 1-punctured torus (a handle) or an embedded Mobius strip (a
crosscap).

In that regard, see in particular Proposition 6.10.

6.2 Braids on surfaces: general theory

Let S be a connected surface. Let us consider the configuration space
F,(S)={(z1,....,xn) € S" |Vi# ], z; #x;} C S™

The braid group on the surface S on n strings is the fundamental group B, (S) of the unordered
configuration space C,(S) = F,(S)/6,. When S is the 2-disc D, this group is exactly Artin’s
braid group, that is B,, = B,,(D).

Let us fix an embedded disc D C S, together with a base configuration ¢ = (c1,...,¢,) € F,(S)
of points ¢; € D. Since the assignment S — B, (S) is functorial with respect to embeddings of
surfaces, we have a (not necessarily injective) group morphism:

¢ : B, =B,(D) = B,(9).

In the sequel, we omit most mentions of ¢: if 8 € B,,, we still denote by f§ its image in B, (5),
which we should denote by ().

We can also construct surface braids from curves on the surface. Precisely, for any i < n, let us
define ¢; : S — D° < F,,(S) by sending z to (¢1,...,Ci—1, &, Cit1, ..., ¢n). This induces a morphism
between fundamental groups:

’(/Ji : 771(5 — ]DO) — Pn(S)

Remark 6.7 The map ¢; cannot preserve basepoints, since the basepoint of F,(S) is not in its
image. However, the induced map between fundamental groups can easily be defined using a chosen
fixed path between ¢; and a point not in D°. The choice of such a path (for each ¢) is implicit in
the sequel, and should be made as simply as possible. For instance, one can fix a segment from c;
to a point on 0D, such that these segments are disjoint for different values of .

The canonical projection 7: B, (S) - &, corresponding to the covering of F,,(S)/&,, by F,(S5),
can be enhanced to a projection:

s : Bp(S) = m(5) 16,
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as follows. Given a braid 8 € B, (5), let us lift it to a path v = (71,...,7,) in F,,(S) from (¢;);
to (co-1(s))i where 0 = m(3). Then send 8 to ((7y,..-,7,),0), where ¥, is the image of 7; in
m1(S/D) = 11 (S). We note that mg is clearly surjective, since its image contains &,, (which is the
image of p(B,,) by 7g), and all the factors m1(S) (which are the images of the ;(m1(5))).

The kernel of g, which in contained in P,,(S), obviously contains the group P,,. We denote it by
P? (S) and we call its elements geometrically pure braids. The following result generalises one of
Goldberg [Gol73, Th. 1] to any connected surface.

Proposition 6.8 The following statements hold for any connected surface S and any integern > 1:
o For any i < n, the group B, (S) is generated by the images of ¢ and ;.
o Its subgroup P, (S) is generated by (the image of) P,, and the images of V1, ..., 1y.

o The subgroup P2 (S) of P, (S) is the normal closure of P,,. Since P2 (S) is normal in B, (S),
it is also the normal closure of Py, in B, (S5).

Proof. Let us first remark that the v; are conjugate to each other by elements of the image of (.
Hence, the second statement implies the first one.

We prove both the second and the third statement by induction on n. Both proofs use the tools
that we introduce now. Consider the following commutative diagram of spaces:

S —Qp — F, 1 (S) —2» F,(5)

| | |

St , gntl _r s,

where @, = {c1,...,cn}, ¢ sends z to (¢1,...,¢n,x) and p send (21, ...,Zp41) t0 (T1,...y2n). It
induces a commutative diagram of morphisms between fundamental groups:

T1(S — Qn) —— P,yi1(S) —2— P,(S)

bbb o2

7T1(S) —> 7T1(S)"+1 —_—> 7T1(S)n,

whose bottom line is obviously exact. The map p is a (locally trivial) fibration by [FN62, Th. 3]
(see also [Bir74, Th. 1.2]), and the first line is part of its exact sequence in homotopy. Thus it is
exact (but ¢, need not be injective in general).

Let us prove our second statement. For n = 1, ¢; is the canonical isomorphism 7(S) =
P,(S) = B1(5), and there is nothing to prove.

Let us now suppose that the conclusion holds for some n > 1. By applying Van Kampen’s theorem,
we see that m (S — Qn) 2 F,, xz 71 (S —D°), where F,, = m (D — @,,) is free on n generators. Then
i : Fpxgm(S—=D°) — P, (S) identifies with the map induced by F,, < P,, (kernel of P,, - P,,_1)
and 1/)n+1 : 7T1(S — ]D)O) — Pn(S)

Now let G be the subgroup of P,,11(S) generated by P, 11 and the images of the 1; for i < n+ 1.
It contains the image of t,, which is the kernel of p,. Moreover, its image by p, contains the
images of 91, ..., 1¥,, and P, hence all of P, (5), by the induction hypothesis. As a consequence,
G = P,1(S), which was the desired conclusion.

Let us prove our third statement. For n = 1, 7g is the canonical isomorphism B;(S) =
P.(S) = 7 (9) (inverse to ¢1). Then P (S) and P, are trivial, and there is nothing to prove.

Let us now suppose that the conclusion holds for some n > 1. Consider the induced maps between
kernels of the vertical morphisms in (6.1). By definition, the kernels of v and w are respectively
P} 1 (S) and P;,(S). Let us denote by K the kernel of u. We get induced maps:

K —25 PS,(S) %5 P2(S)
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such that py oty = 1. An easy chase in the diagram (or an application of the Snake Lemma)
shows that we can lift any element in the kernel of py to an element of K: the above sequence is
exact.

The morphism u identifies with the projection F,, xz w1 (S — D°) — {1} %z m1(S — D°) = 711(S)
killing the first factor, hence K identifies with the normal closure of F,, in F,, xz 71(S). Moreover,
ts sends F,, = m (D — @Q,,) to a subgroup of P,,;1, so the image of K in P, 1(S) is contained in
the normal closure of P, 1.

Now, let N be the normal closure of P, 1 in P, 1(S). Since v(P,4+1) = {1}, we have v(N) = {1},
which means that N C P; ,,(S). By the induction hypothesis, px(N) = P5,(S). Moreover, N
contains the image of i, which is the kernel of pu. Thus N = Pj_,(S), which was the desired
conclusion. O

The proof of Proposition 6.8 also works for manifolds in higher dimension, allowing us to recover
the classical [Bir69, Th. 1]:

Proposition 6.9 For any manifold M of dimension at least 3, war: B (M) - m (M) 16, is an
isomorphism.

Proof. One can directly check that the proof of Proposition 6.8 works if we replace the surface S
with a connected manifold M of any dimension d > 2 and the disc D with a d-disc D?. Then P, gets
replaced with P,,(D?), which is trivial whenever d > 3 (the configuration space F,,(D?) = F, (R?)
is obtained from R™? by removing subspaces of codimension d > 3, so it is simply connected).
Thus, the normal closure P¢ (M) of P, (D?) is trivial too, and the latter is exactly the kernel of
TM - O

This means that braid groups on manifolds of dimension at least 3 are exactly wreath
products, whose lower central series in studied in the appendix; see in particular Corollaries B.25
and B.27.

Pure braid generators and commutators. Some of the results below will hold for all surfaces
S. However, in order to get more precise results, we need to get more specific and use the classifi-
cation of surfaces recalled in §6.1. Recall that all the generators o; of B,, are identified in B3> = Z
(see Example2.3), hence also in B,,(S)*". The following Lemma deals notably with the order of
their common class o. The trichotomy that appears here, which comes from Proposition 6.6, will
play an important role in all that follows:

Proposition 6.10 Let n > 2. Let us consider the generator A;; of Py, as an element of B, ().
o If S is planar, then the class A;; € B, (S)* has infinite order.
o If S=S?, then the class A;; € B,,(S)* has order n — 1. However, its class in P,,(S)*" has
infinite order.

o In all the other cases, A;; is the commutator of two elements of P, (S).

Proof. If S is planar: then S can be embedded in a disc. This embedding induces a morphism
B,.(S) = B,(D) = B, which in turn induces a morphism from B,,(5)*" to B2". The latter is
infinite cyclic, generated by o. Our element A;; is sent to o, hence it cannot be of finite order.

If S is the sphere: then from the usual presentation of B,,(S?) (see Corollary A.18), we get that
B, (S?)#" = Z/(2(n — 1)), generated by o (which is the common class of the usual ;). Again,

A;; = 02, whose order is n — 1.

If S cannot be embedded in the sphere: then S contains a handle or a crosscap; see Propo-
sition 6.6 and the remark following it. We can then use the explicit isotopies drawn in Figure 6.1
and 6.2 to show that A;; is a bracket of two pure braids (which are respectively in the image of 9;
and in the image of ;). O
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Figure 6.1 Pure braid generator as a bracket on a surface with a crosscap.

N ’
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Figure 6.2 Pure braid generator as a bracket on a surface with a handle.

6.3 The lower central series of the whole group

We now turn to the study of the lower central series of B, (S), which we completely determine
for any n > 3 and any surface S. We begin by computing the abelianisation of this group; see
Proposition 6.11. Then we study B,,(S)/['w, and we show that when n > 3, it is nilpotent of
class at most 2, which means that the lower central series of B, (S) stops at most at I; see
Theorem 6.13 and Corollary 6.15. Finally, we compute the Lie ring, generalising a result of
[BGGO8]; see Theorem 6.19.

6.3.1 The abelianisation

We first compute the abelianisation of B,,(.9), for any n and any surface S. In order to do this, we
recall that the group morphism ¢: B,, — B,,(S) induces a map B2> — B,,(5)?", and that, since
all the o; are identified in B2P = Z, they are so also in B, (S)2°. We denote by o their common
image in B,,(S5)2".

Proposition 6.11 In general, for allm > 2, we have:
B,,(5) 2 71,(9)* x (o).

Moreover, o is:
o of infinite order if S is planar,
o of order 2(n — 1) if S = §?,

e of order 2 in all the other cases.

Proof. Applying Lemma 1.8 to the short exact sequence P5,(S) < B, (5) i m1(5) 16, we get an
exact sequence of abelian groups:

(Po(8)*)B,(5) — Bn(9)* — (m1(5)16,)* —— 0.

On the one hand, the quotient (71(S) &, )2 is isomorphic to 71 (S)2> x Z/2 (Lemma B.22). On
the other hand, it follows from Proposition 6.8 that P2 (.S) is generated by P,, under the action of
B,,(S). As a consequence, the map P> — (P2 (5)*?)g (s induced by ¢ is surjective. Moreover, it
factors through (P2*)g, = (P?")s, = Z. Thus (P (5)*")g, (s) is cyclic, and its image in B,,(5)*"
is generated by o2, which is the image of any pure braid generator.

All this implies that B,,(S)*" /(o) = 71 (5)2P. Moreover, the corresponding projection B,,(S)2> —
71(9)2P splits, a splitting being induced by any of the ;. As a consequence, B,,(S)*" identifies
with 71 (9)2P x (o), and we can use Proposition 6.10 to get a complete calculation. O
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6.3.2 The lower central series

Let us now turn to the study of the lower central series of B, (S). Our main tool for studying it
is the decomposition theorem 6.13 below, whose proof relies on the following:

Lemma 6.12 Let n > 3. The image of B, in B, (S)/I's is cyclic, and it is central. Namely, it
is generated by the common class o of the usual generators o; of B,,.

Proof. The morphism ¢ sends I'(B;,) to (B, (S)). From Jioj_l € I'n(B,) for all i,j < n,
we deduce that o; = 0; (mod I'no(B,(5))). Let us denote by o € B,,(S)/I'x the common image
of the o;’s. Since the o;’s generate B,,, the image of B,, in B, (5)/Iy is the cyclic subgroup
generated by o. In particular, its elements commute with o. Moreover, for all v € 71 (S —D°), the
braids o9 and 1 () have disjoint support, hence o also commutes with the image of ;. Since the

images of ¢ and v generate B,,(S) by Proposition 6.8, this means that o is a central element of
B,.(9)/I%. O

We can now state our main decomposition theorem:

Theorem 6.13 For all n > 3, there is a central extension:
(02) —— B,(9)/ls — 7r1(S)'°‘b X Z7./2.

Proof. Since wg is surjective, it sends I'n, (B, (S)) onto a normal subgroup of m(S) 1 &,,. This
normal subgroup is contained in I'w(m1(S5)?S,,) and contains the Tﬂj_l, which are the images of

the O’iO'j71 € I'u(B,(9)). By Lemma B.24, it is equal to I»(m1(S) 1 &,,). Then, we can apply the
Nine Lemma to the diagram:

I'o(B,(9))NPLS) ———— T'o(Bn(S)) ———» In(m(S) 16,).

l [ l

P2 (S) B,(S) — = —— m(9)16,

P (5)/ I (Bn(5)) N PL(S) ----- > Bu(S)/Log ——-"2== (m1(5)16,)*".

Then recall that (71(5) 1 &,)* = 71(5)* x Z/2. Thus, we are left with analysing the kernel
P2 (S)/ I (Br(S)) NPL(S) of Tg, which is the image of P2(S) in B, (S)/I'x. Since P2(5) is the
normal closure of P,, in B,,(S) by Proposition 6.8, its image in B,,(S)/I' is the normal closure of
the image of P,,. But P,, is sent to (0?) which is central (and, in particular, normal) in B,,(S)/I's,
whence the result. O

Remark 6.14 We also have a central extension:
(o) —— B,(9) /T —> wl(S)ab.

This slightly different statement tells us slightly different things: it implies that o is central,
whereas the statement of the theorem says that 7 is not trivial in B,,(S)P.

Corollary 6.15 For any n > 3, we have I'3(B,(S)) = ['4(B,(9)).

Proof. Proposition 6.13 implies that B,,(S)/Iy is 2-nilpotent, which means exactly that its I's is
trivial. In other words, I's C ['s for B, (95). O

The remaining cases consist in the cases when n =1 and when n = 2.

Proposition 6.16 For any connected surface S, either B1(S) = m1(S) is abelian, which occurs
precisely when S € {D — pt, D, S% T2, P2, M?} up to isotopy equivalence, or its lower central series
does not stop.
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Proof. 1If S is closed and not in {S?,P?, T?} then the lower central series of 71 (S) does not stop. To
see this, note that it admits a presentation of the form (a1,b1,...,aq,bg | [a1,b1] - - [ag, bg] = 1) or
(c1,...,¢q | ¢} c2 =1) for g > 2, and these both project onto Z/2+7Z/2 = (x,y | #* = y*> = 1) by
sending a1,b1, ¢; to x and all other generators to y; the lower central series of Z/2 % Z/2 does not
stop by Proposition B.16. If S is non-compact, its fundamental group is free by Proposition 6.4.
If it is also not in {D — pt,D,M?} then its fundamental group is moreover non-abelian free, and
hence its lower central series does not stop by [Mag35]. O

Proposition 6.17 When S is not D, S? or P?, up to isotopy equivalence, the lower central series
of B2(S) does not stop.

Proof. The group Bz () surjects onto 71(S)1S,. Since 71 (S9)*P surjects onto Z except in the three
excluded cases of the statement, we can apply Corollary B.27 to see that the lower central series
of 71 (5) 1 &5 does not stop. Then the one of B,,(S) does not either by Lemma 1.1. O

Quote[BB0O9b].

Remark 6.18 Clearly, the lower central series of Ba(D) 2 Z and of B (S?) = Z/2 both stop at I%.
The fact that Bo(S?) = Z/2 is part of Fadell and Van Buskirk’s Theorem quoted as Corollary A.18.
On the other hand, the group By (P?) is the dicyclic group of order 16 [Bus66, p. 87], which is
3-nilpotent, so its lower central series stops at Iy.

6.3.3 The Lie ring

We can be more precise about our description of the lower central series of surface braid groups.
In particular, Corollary 6.15 says that for n > 3, the lower central series stops at most at I3, but
it does not say when it stops at I» (then the associated Lie ring consists only of the abelianisation,
which has already been computed in Proposition 6.11), or when it stops at I's (in which case the
Lie ring is 2-nilpotent but not abelian). We now show that the latter holds only for non-planar
orientable surfaces, and we compute precisely £(B,,(.5)), generalising results of [BGGOS].

Theorem 6.19 Let n > 3 be an integer and S be a connected surface. The lower central series of

B,(S):

o stops at I if S is either planar or non-orientable, or if S = S2.
o stops at I in the other cases. Then Lo(B,,(S)) is cyclic, generated by the common class o
of the pure braid generators A;j.

2

Moreover, in the second case, o2 is of finite order if and only if S is closed, in which case its order
ism+ g — 1, where g is the genus of S.

Proof. Since the lower central series of B, (S) stops at most at I's, the subquotient £2(B,(5))
identifies with Iy (B, (S)/I's) (the latter being It/Io(B,(S)) = I/I3(By(S))). Moreover,
using the central extension of Theorem 6.13, we see that in B,,(S)/I's, the subgroup I'; must be
contained in (%), which implies that it is cyclic, generated by a power of o2.

Planar surfaces. If S is planar, then the common class o of the o; in B,,(S)*® = (B,,(S)/I'x)*"
is of infinite order by Proposition 6.11. As a consequence, I3(B,,(S)/I'x) does not contain any
power of o = 771. But I3(B,,(5)/I'x) is contained in (¢2), so it must be trivial, which means that
I = I, for B,(S).

The sphere. If S = S?, then B,,(S?) is a quotient of B,, (see Corollary A.18), which implies that
its lower central series also stops at Is.

Non-orientable surfaces. The surface S is non-orientable if and only if it contains an embedded
Mébius band. Then o? = [o1co; b, ¢7!] for some ¢ € B, (S): precisely, ¢ is a braid whose first
strand goes around the Mé&bius strip once, that is, through the crosscap; see Figure 6.1. Since o1
is sent to the central element ¢ of B,,(S)/I», this relation implies that 02 = [¢,¢ '] = 1. Thus
(0?) is trivial, and so is its subgroup I (B, (S)/I's) = L2(B,(9)).
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Non-planar orientable surfaces. If S has a handle, then 0? = [ail,olbafl] for some a,b €
B,.(5). Precisely, a and b are braids whose first strands go around a handle; see Figure 6.2. Hence
02 € I'y (B, (9) /'), which implies that £2(B,,(9)) is generated by o2.

If S is a non-planar compact orientable surface with at least one boundary component,
then S can be embedded in some X, ; for an arbitrary large g, by attaching a disc to each boundary
component save one. The induced map £2(B,,(S)) — L2(B,(X,1)) sends 02 to o2, and the latter
is of infinite order (Proposition 6.20).

If S is a non-compact non-planar orientable surface, let us suppose that o2 is a torsion
element in B, (S)/Isx = B,(S)/I3. Then for some integer k, o2* is equal to some product of
commutators of length at least 3 in B,,(S). Such a formula involves only a finite number of braids.
Let us choose a representative of each of these isotopy classes. These involve a finite number of
paths on the surface. If moreover we choose an isotopy realising the aforementioned equality of
braids (using the concatenation of the chosen representatives as a representative of the right-hand
side), the image of this isotopy is contained in a compact subsurface S’ of S. Thus, our formula
also holds in B,,(S"): 2" is equal to some product of commutators of length at least 3 in there.
Then 0%* = 1 in B, (S’)/I3. However, this contradicts the previous case, since S’ cannot be
closed (nor planar). We conclude that o cannot be a torsion element in B,,(S)/'~; equivalently,
L2(B,(9)) 2 Z.

If S is a closed orientable surface X, of genus g > 1, then £2(B,(X,)) = Z/(n+ g —1). This
is [BGGO8, Th. 1], which can be deduced from Proposition 6.20 below. We will do so in a more
general context later; see Proposition 6.34. O

The proof of the following result is inspired from [BGGO0S8]. In fact, it is equivalent to [BGGOS,
Th. 1] in a quite straightforward way; see Remark 6.21.

Proposition 6.20 Let g > 1, and let Xy 1 denote the compact surface of genus g with one boundary
component. For every n > 1, L2(B,(X,.1)) = Z, generated by the common class o2 of the pure
braid generators.

Proof. We compute completely B,,(2,1)/I3. Let us consider the quotient of B, (X, 1) by the
relations o; = 0,11, that is, by the normal closure N of the Ul-a;_ll for 1 <7< n—1. We already
know that, modulo I3, the braid generators o; have a common class ¢. In particular, N C I,
and we will show that N = I3 by showing that G := B, (X,1)/N is 2-nilpotent. Thanks to
Proposition A.14, we can compute a presentation of this quotient. It is generated by o, together
with a, and b, for 1 < r < g. The braid relations on the o; become trivial there. (BS1) says that o
is central. (BS2) says that the a, and the b; commute with one another, except a, and b, (for each
7). Since o is central, (BS3) becomes trivial. Finally, (BS4) can be written as b.a,.b, ! = a,02.
From this presentation, one can see that G = (Z x Z9) x Z9, where the three factors are free
abelian on o, the a, and the b, respectively; the action of each b, is trivial on ¢ and the ay if
s # r, and b, - a, = a, — 20. Since this group is 2-nilpotent, we have N = I3(B,(3,1)), as
announced. Moreover, the Lie ring of G, which is the Lie ring of B,,(X4,1) by Corollary 6.15, is
easy to compute. Namely, £1(G) = G*> = (Z/2)? x 7?9, L3(G) = I'(G) = Z is generated by o2,
and the only non-trivial brackets of generators are [@,., b,| = o2. O

Remark 6.21 Here we choose to recover [BGGO8, Th. 1] from Proposition 6.20. However, one can
also deduce Proposition 6.20 from [BGGOS8, Th. 1]. Namely, one can embed X, ; into X, for any
g > g, by attaching ¥, _,; along the boundary component. The induced map L2(B,(34,1)) —
L5(B,(2,)) sends 02 to 02, and the latter is of order n + ¢’ — 1 by [BGG08, Th. 1]. Thus, by
varying g’, we see that o cannot be of finite order inside Lo(B,,(34,1)).

Remark 6.22 The group (Z x Z9) x Z9 appearing in the proof of Proposition 6.20, which is then
the maximal nilpotent quotient of B,,(3, 1), has a nice interpretation as a matrix group resembling
the Heisenberg group of a symplectic vector space. Namely, it is the subgroup of GLg12(Q) given
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Remark 6.23 (About the Riemann-Hurwitz formula) The result from [BGGO8, Th. 1] quoted
above and recovered below says that when S is an orientable closed surface, the information encoded
in L5(B,(9)) is essentially the genus of S, or its Euler characteristic. In fact, one can recover
the Riemann-Hurwitz formula for coverings of closed surfaces from this computation. Indeed,
let p: ¥, — X, be a k-covering. It induces a continuous map p*: C,,(E,) — Cin(Xh) between
unordered configuration spaces sending a configuration of n points to the configuration of the kn
preimages of these points by p. The induced map between the fundamental groups sends the pure
braid generator Ajs to the product of the A; ;.1 for j € p~'(1) (if the correct conventions are
chosen). Thus the induced map from £5(B,,(3,)) to L2(Byn(X1)) sends o2 to ko?. Since o is of
order n+ g — 1 in L5(B,(X,)), we obtain (n + g — 1)ko? = 0 in L3(By,(Xs)). However, o2 is of
order kn + h — 1 there, implying that kn + h — 1 divides kn + k(g — 1). This holds for all n. For n
big enough, kn+k(g—1) < 2(kn+h —1), so the only possibility is that kn+k(g—1) = kn+h—1,
that is, k(g9 — 1) = h — 1, as announced.

6.4 Partitioned braids on surfaces

Let us now study the lower central series of partitioned surface braid groups B (S), generalising
the results from §6.3, which can be seen as the case of the trivial partition A = (n) of n. We
follow the same steps: we first compute the abelianisations of B (.S) in Proposition 6.26, before
studying B (5)/[ s and showing that the lower central series of B (.S) stops at most at I3 when
the partition A has only blocks of size at least 3 in Theorem 6.28 and Corollary 6.29. Finally, we
compute the associated Lie rings in Theorem 6.30.

Definition 6.24 Let S be a surface, let n > 1 be an integer, and let A = (nq, ...,n;) be a partition
of n. The corresponding partitioned surface braid group is:

Byr(S) =718y =71 (B, x - x B,,) CBL(9).
There are canonical surjections between partitioned braid groups, obtained by forgetting blocks.
For most surfaces, these projections behave exactly as they do for the disc. However, their be-

haviour for closed surfaces is somewhat trickier, especially when it comes to the sphere and the
projective plane:

Proposition 6.25 (Fadell-Neuwirth exact sequences) Let S be a connected surface, let p be a
partition of an integer m = 1, v be a partition of an integer n = 1, and let us denote by pv their
concatenation, which is a partition of m + n. The following sequence of canonical maps is exact:

B,.(S — {n pts}) — B (S) — B,(S) — 1.

Moreover, except when S = S? andn = 1,2 or S = P2 and n = 1, this is in fact a short exact

sequence:
1— B,(S—{n pts}) — B,.(S) — B,(S) — L

Furthermore, if S is not closed, the surjection B, (S) = B,(S) splits.

Proof. Recall that if A is a partition of N, we denote by C(S) the configuration space Fn(S)/G .
Forgetting the first n points induces a map of configuration spaces Cy,,(S) — C,(S), which is a
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locally trivial fibration with fibres homeomorphic to C,, (S — {n pts}) [FN62, Th. 3]. Since its fibres
are path-connected, part of its long exact sequence of homotopy groups is:

m2(C(S)) = BL(S — {n pts}) — B, (S) — B,(S) — 1.

The map F,(S) — C,(S) is a covering, so that mo(C,(S)) = m2(F,(S)) is trivial except when
S =S8%and n =1,2or S =P? and n = 1. More precisely, when S = S? this is [FV62, Cor. p. 244],
when S = P? it is [Bus66, Cor. p. 82] and in all other cases it is [FN62, Cor. 2.2].

If S is not closed, then there is an isotopy equivalence between S and a proper subsurface S’ of S.
Then one can choose a configuration of m points in S — S’ and add them to each configuration of
n points of S’ getting a map F,,(S") = Fyn(S). The induced map 71 (C,(5)) = 71 (C,(57)) —
m1(Clw (5)) is the required section. O

6.4.1 The abelianisation

Let A = (n1,...,n;) be a partition of an integer n. A computation of B(S)2> can be obtained by
a quite straightforward generalisation of the computation of B,,(S5)" from Proposition 6.11.

ab

Let us first recall that the morphism ¢ from §6.2 induces a map B3” — B, (S)*". Then, from

Proposition 3.4, we get that:

e For each i < [ such that n; > 2, all the o, with a and a + 1 in the i-th block of A have a
common image in B (S5)?", called s;.

o For cach i < j <, all the A,p with « (resp. 8) in the i-th (resp. the j-th) block of A have a
common image in B (S)?", called a;; (or sometimes a;;).

Let us now consider the short exact sequence:
P?(5) —— Bi(S) —» m1(S) 16,
We can apply Lemma 1.8 to it, and we get an exact sequence of abelian groups:
(Po(S)*)B, (5) — BA(S)™ —— (m1(5)16,)*» —— 0.

On the one hand, the quotient (1(S) &) is isomorphic to the product of the (71(S5) 1 &,,)*",
which is (m1(S)*P)! x (Z/2)" by Corollary B.23 where I’ is the number of indices 7 < I such that
n; > 2. On the other hand, it follows from Proposition 6.8 that P¢,(S) is generated by P,, under the
action of P,,(S), which is a subgroup of Bx(S). As a consequence, the map P2> — (P;,(5)*")g, (s)

~

induced by ¢ is surjective. Moreover, it factors through the quotient (P2P)g, = (P2P)g, =
Z'1=D/2 x 7V, Thus the image of (PZ(5)*")g, (s) in BA(S)*" is generated by the images of the
pure braid generators, which are the elements 2s; for ¢ < [ such that n; > 2, and a;; for i < j <.

Now, let H be the subgroup of B(S)*? generated by the s; and the a;;. From the above, we get
an isomorphism By (S)*/H = (71(5)2P)!. Moreover, the corresponding projection By (S5)*P —
(m1(S)*P)! splits: a splitting is induced by the product of the v;, where each 1; is induced by any
Ya, for a in the i-th block of A. As a consequence, B (S5)2P identifies with (1 (9)*P)! x H, and we
can use Proposition 6.10 to get a complete calculation:

Proposition 6.26 Let n > 1 and A = (nq,...,n;) be a partition of n. Then:
B,(S)™ = (m(9)™) x (B/R),

where Bib is free abelian on the s; and the a;; from Proposition 3.4. Moreover, R is:
e trivial if S is planar,
o generated by the relations 2(n; — 1)s; + Zj# nja;j (for all 1 <i<n)if S=S?

o generated by the 2s; and the a;; in all the other cases.
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Eaplicitly, if I denotes the number of indices i < 1 such that n; > 2, we have, for S % S%:

B /R = 7V x z0=1/2 if § s planar,
A T (z/2)" if S does not embed into the sphere.

Proof. If S # S?, all the relations are direct consequences of Proposition 6.10, and it remains to
prove that they are the only ones. In the first case, we can directly use the result of Proposition 3.4:
an embedding of S into R? = S§? — pt induces a retraction B)(5)*® — B3’ of the morphism
B3> — B, (9)2 induced by ¢, whence the result in this case. In the third one, the same proof as
the proof of Proposition 3.4 works: projections onto the factors are given by projections onto the
G = 7,/2 for n; > 2.

If S = §%, Corollary A.22 describes B (S?) as the quotient of By by the relations Ay1 Az -+ Aan =
1 for all 1 < a < n. The abelianisation B(S?)? is then the quotient of B3" (described in
Proposition 3.4) by the classes of the above relations. If « is in the i-th block of A, then the class
of A,p is either 2s; if B is also in the i-th block (which holds for n; — 1 values of §), or a;; if 8
is in the j-th block for some j # ¢ (which happens for n; values of 3, for each j # 4). Thus the
classes of the Ay1Aq2 -+ Agn are indeed the relations of the statement. O

6.4.2 The lower central series

The work done above for showing that the lower central series of B, (S) stops if n > 3 (see
Corollary 6.15) generalises to the partitioned braid group when all the blocks of the partition are
of size at least 3. First, here follows the generalisation of Lemma 6.12.

Lemma 6.27 Let A = (ny,...,n;) be a partition of n, with n; = 3 for all i. The image of By in
B\ (S)/I' is central. In particular, it is a quotient of B5P.

Proof. Tt follows from Theorem 3.5 that I'n,(By) = I2(B)). As a consequence, the morphism
v : By = By(5) /I factors through B /Is = B*}\b. Hence its image is abelian, generated by the
images of the s; and the a;; from Proposition 3.4.

In order to show that it is central, we need to show that these elements commute with generators
of Bx(S)/I's. We deduce from Proposition 6.8 that B (S) is generated by the images of ¢ and of
the 9. In fact, we can restrict to taking one o in each block of A, since 1, and g are conjugated
by elements of By if & and /3 are in the same block. The s; and the a;; already commute with each
other, so we only need to show that they commute with the images of the 1. Since all n; > 3, we
can find representatives of all the s; and the a;; whose support is disjoint from elements of Im (1))
for each fixed «. Thus, the s; and the a;; commute with a family of generators of B»(S)/I',
which proves our claim. [

We can now generalise our main decomposition theorem (Theorem 6.13) to partitioned braids:

Theorem 6.28 Let A\ = (ny,...,n;) be a partition of n, with n; > 3 for all i. There is a central
extension:
(s7,aij)ij<1 — Ba(S)/Too — (m(S)™ x Z/2)".

Proof. The proof is essentially the same as the proof of Theorem 6.13, so we only stress what
changes. The element aaalgl is in (B, (95)) only when « and § are in the same block of

A. However, their images TaTﬂ_l in m1(5) 1 6, still normally generate I'x(m(S) ! Sy), because

71(S) 16, is the product of the m1(S)1S,,,, whose I'; is normally generated by the TaT/;l for o and
B are in the i-th block of A (Lemma B.24). Thus, arguing exactly as in the proof of Theorem 6.13,
we get a short exact sequence:

P (8)/Tso(BA(S) NPR(S) —— Ba(S8)/Ioe — (m1(S) 162)*".
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We recall that (m1(S)1&,)2P = (m1(9)2P x Z/2)!. Moreover, the kernel is the normal closure of
the image of P,,, but this image is already normal, and even central by Lemma 6.27, generated by
the a;; and the squares of the s;. O

Finally, Corollary 6.15 adapts readily to this context:

Corollary 6.29 If all the blocks of A have size at least 3, then I's(BA(S)) = I'y(BA(S5)).

6.4.3 The Lie ring

Here again, in the stable case (that is, when all the blocks of our partition A have size at least 3),
we can be more precise about the description of the lower central series. Namely, we generalise the
calculations of Theorem 6.19 as follows:

Theorem 6.30 Let A = (ny,....,n;) be a partition of an integer n with n; > 3 for all i, and let S
be a connected surface. The lower central series of By(S):

o stops at Ih if S is planar, if S = S? or ifl =1 and S is non-orientable.
e stops at I3 in the other cases.

Remark 6.31 In both cases, the Lie ring can be computed completely. Namely, £1(Bx(S)) =
B, (5)?" has already been computed in Proposition 6.26. In the first case, no further computation
is required. In the second case, L5(Bx(S)) is described completely in Proposition 6.33 and Propo-
sition 6.34 for orientable surfaces, and in Corollary 6.37 and Corollary 6.39 for non-orientable ones.
Moreover, one can easily describe the Lie bracket from the computations given there. Precisely,
the only non-trivial brackets are coming from the computations depicted in Figures 6.2 and 6.1.

Proof of Theorem 6.30. Let A = (ny,...,n;) be a partition of n with all the blocks of size at
least 3. We know that I's = I, for By(S) (see Corollary 6.29). Then L2(Bx(S)) identifies
with Iy (Bx(S)/I'x). Moreover, in By(S)/I'w, the subgroup I's must be contained in the kernel
(s2,a;;)i j<i of the central extension of Theorem 6.28.

Planar surfaces. If S is planar, then the canonical projection from By (S)/I» to Bx(S5)2" sends
the s; and the a;; to their counterparts in B(S)*". The latter is a linearly independent family
by Proposition 6.26, so the restriction (s?, a;;); j<i — Ba(S5)*® must be injective. But its kernel is
I3(BA(S)/I'ss) = L2(BA(S)), which must then be trivial.

The sphere. If S = S?, then B, (S?) is a quotient of By, (see Corollary A.22), which implies that
its lower central series also stops at I5.

Non-planar orientable surfaces. Proposition 6.33 deals with most of them; the remaining ones
are the closed surfaces, for which Proposition 6.34 is the relevant statement.

Non-orientable surfaces. These are dealt with in Corollary 6.37, except for the closed ones,
whose Lie ring is studied separately, in Corollary 6.39. O

The following observation will be of essence in our study of the Lie ring of B»(.S) when S is not
planar or the sphere:

Fact 6.32 If S has a handle or a crosscap, then L2(By(S)) identifies with the kernel (s?,a;;)i j<i
of the central extension of Theorem 6.28.

Proof. We have already observed that Lo(Bx(S)) identifies with I (BA(S)/I's), which is con-
tained in (s?,a;j); j<i (see the beginning of the proof of Theorem 6.30). If S has a handle or a
crosscap, then the quotient (m;(S)2® x Z/2)! of B)(S)/I» identifies with its abelianisation (see
Proposition 6.26). As a consequence, the subgroup I (Bx(S)/I~) is the whole of (s?, a;;)i j<i- O

Non-planar orientable surfaces. We first turn our attention to the case where our surface is
not closed.
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Proposition 6.33 If S is a non-planar orientable surface which is not closed, then Lo(Bx(S)) is
free abelian on the a;j and the s?.

Proof. We already know that these elements generate Lo(Bx(S)) (Fact 6.32), so we need to show
that they are linearly independent. The argument from the proof of Proposition 3.4 works here,
using the maps from L3(Bx(S)) to L2(By,(S)) = Z and Lo(By,,1n,(S)) = Z instead of the
maps from B3® to B2 and B3P This uses the fact that £2(B,(S)) = Z if n > 3, from

nit+mn;:

Theorem 6.19. O

The case of closed orientable surfaces is a bit trickier. In fact, we first need to generalise [BGGOS,
Th. 1]:

Proposition 6.34 Let g > 1. Then L2(Ba(3,)) is the quotient of the free abelian group on the
ai; and the sf by the relations:

(ni+g—1)s?+2njaij =0, foralll<i<n.
J#i

Proof. Let us consider the subsurface ¥, of £, obtained by removing an open disc. The corre-
sponding embedding of ¥, ; into ¥, induces the quotient maps described in Corollary A.22. In
particular, Bx(2,)/I3 is the quotient of By (X,1)/I5 by the classes of the relations from Corol-
lary A.22. Since the Ay are in I'5(Bx(3,,1)), these relations are between elements of I, that is,
of (s?,a;;)i j<i- In order to write them as relations between the s? and the a;;, we need to recall
that if « is in the i-th block of A, for any r < g, we have, in Lo(Bx(S5)):

oG] - [ - [ ] - 7 -
where the third equality comes from Figure 6.2. Moreover, the class of A,3 modulo I'5(B(5)) is
either s? if & and 3 are both in the i-th block of A, or a;; if a is in the i-th block and 3 is in the
j-th block for some j # i. Finally, using additive notations in the central subgroup (s?,a;;), the
classes of the relations from Corollary A.22 are:

(n; — 1)5? + anaij = —gsf foralll1 <i < n.
J#i

Moreover, these relators are central in By(X,)/I'x, so their normal closure is only the subgroup
they generate, which implies that I»(Bx(X,)/I3) is the quotient of I5(Bx(34,1)/I3) by these
relations. By Proposition 6.33, the latter is free on the s? and the a;;. Whence our claim. O

Remark 6.35 Let us remark that this computation of L2(Bx(X,)) is very similar to the compu-
tation of £1(B(S?)) in the proof of Proposition 6.26 (note that s? was equal to 2s; there, but here
s; and s? do not live in the same part of the Lie ring). The only difference lies in the degree of
our relations with respect with the lower central series: if the surface has a handle, then the pure
braid generators A,g belongs to the derived subgroup (see Figure 6.2).

Non-orientable surfaces. For non-orientable surfaces, we already know that the s? vanish in the
quotient by 'y, as in the proof of Theorem 6.19. As a consequence, I's (B, (S)/I's) is generated
by the a;;. The following proposition is an analogue of [BGG17, Prop. 3.7] in the non-orientable
case:

Proposition 6.36 Let g > 0 and m,n > 3. We have:
Biun(Ng1)/Too = (Z/2) x (Z x Z9) x L7,

where the factors are respectively generated by s1 and s2, ais, c. and c,.. The action is given by
crchel = claya (for all v < g), and all the other pairs of generators commuting. In particular, it
is 2-nilpotent, and Lo(By, n(Ng,1)) is infinite cyclic, generated by ay2.
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Proof. Recall that we have a split extension (from Proposition 6.25):
Bm(Ng,1+n) — Bm,n(Ng,l) - Bn(Ng,l)-

Thus, we can get a presentation of By, (N, 1) from the presentation of the quotient described in
Proposition A.15 and the presentation of the kernel from Proposition A.16, using the method of
§A.3. The generators of this presentation are the o; for i # m, the ¢, = cgl), the ¢ := c$m+1), and
the z; = A1 m4; (where our conventions are those from §A.2).

We use this to get a presentation of the quotient of B,, ,,(Ng 1) by the normal closure N of the
oio for i < m+nandi ¢ {m—1,m}, together with the zjzjjrll for j < n. This quotient
is generated by the common class s; (resp. sg, resp. ajs) of o1,...,0m—1, the common class so of
Omt1, -, Om—1, and the common class a2 of 21, ..., z,,, together with the ¢, and the ¢, for r < g.
They are subject to the following relations:

+ Relations coming from those of B,, (N, 1): so commutes with the ¢/ (BN1), the ¢ commute
with one another (BN2) and s3 =1 (BN3).

o Relations coming from those of B,,,(Ng 145): s1 commutes with the ¢, (BN1), the ¢, com-
mute with one another (BN2), s3 = 1 (BN3), aj2 commutes with s; (BN4), and with the
¢ (BN5). (BNG6) and (BN7) become trivial.

o Relations describing the action by conjugation of sy and the ¢, on s1, a2 and the ¢,. This
action is easily seen to be trivial in most cases, since most of the pairs of elements involved
come from elements having disjoint support in By, ,,(Ng 1), hence they commute. Namely,
this holds for ¢ and ¢ when r < s: using the fact that a1o commutes with c;, we see that
cs is the classes of zlc(rl)zf ! whose support is disjoint from the support of cﬁmﬂ) (up to
isotopy). This is again true for a;2 and the ¢}, since s2 commutes with the c..: ¢/ is the class
of ™2 — am+1c§m+1)a:ﬂil, whose support is disjoint from that of z;. Finally, the only
pair of generators under scrutiny for which this does not hold are ¢, and ¢ (for r < g). But

for them, the situation is the one from Figure 6.1: [(c.)™!, ¢;] = A1 mt1 = a2

These relations can be summed up as:

o All the generators commute pairwise, except ¢, and ¢, for r < g,
o s2=53=1
1 — 22— &

o c.clet =clags.

This is a presentation of the group described in the statement. Its commutator subgroup is the
factor Z of the decomposition, which is infinite cyclic, generated by ai5. It is also central, hence
the group is 2-nilpotent. Since this group is By, n(Ng.1)/N, N contains I'3(By, n(Ng,1)). But the
elements normally generating N are in Io(Bmn(Ng,1)); see Lemma 6.27 and its proof. Thus
N =TI (Bm,n(Ng,1)), and the Lie ring of the quotient By, ,(Ng1)/N identifies with the Lie ring
of By, n(Ng1). In particular, since its I's is trivial, its Lo coincides with its I, which is infinite
cyclic, generated by aps. O

Corollary 6.37 Let S be a non-orientable surface which is not closed. Let A = (nq,...,n;) be
a partition whose blocks are of size at least 3. Then L2(Bx(S)) is free abelian on the a;; for
1<i<j<l.

Proof. We first show that if m,n > 3, L2(B,,,(5)) is infinite cyclic, generated by ajo. This is
true for S = Ny by Proposition 6.36. Then we can follow the same method as in the proof of
Theorem 6.19, to which the reader is referred for more details. Namely, we already know that
Lo(B,, n(5)) is generated by aiz, and we need to show that it has infinite order. If S is compact,
we can embed S into some Ny i, and the image of a2 by the corresponding morphism from
L2(Bmn(S)) to L2(Byy,,(Ng,1)) has infinite order, whence our claim in this case. Then, if S is
not compact, a relation saying that a;2 has finite order in B, ,,(S)/I's would hold in a compact
subsurface, which is impossible by the previous case.

From this, we can deduce the result for A having more than two blocks, reasoning as in the proofs
of Propositions 3.4 and 6.33. Indeed, each canonical map Lo(BA(S)) — L2(Bn, n, (5)) = Z kills
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all the ay;, except a;;, which is sent to a generator of the target. Thus the a;; must be linearly
independent. O

Proposition 6.38 Let g > 0 and m,n > 3. Then L2(By, n(Ny)) is cyclic of order 2, generated
by ai12.

Proof. Let us consider G := By, ,(N,)/I3. This group is the quotient of B,,,,(Ng1)/I5 =
Bin(Ng)/Too = (Z/2)? x (Z x Z9) x Z9 described in Proposition 6.36 by the images of the
boundary relations from Corollary A.22. Before considering these relations, we can already remark
that the commutator subgroup of By, »(Ng,1)/I3 is cyclic generated by ai2, so the same holds for
G. Since I'»(G) identifies with Lo(Bp, n(Ng)), we only need to show that a;2 has order 2 in G to
prove our statement.

We recall that A,g is sent to s? = s3 = 1 if a and 8 are in the same block of the partition (m,n),
and to aqo if they are not. As a consequence, these relations are:
el cg =a and (c))?--- (c;)2 = aly.

Since ¢; commutes with all the other generators except ¢}, and [c1, )] = a12, by applying the
commutator with c; to the second relation, we get a2, = 1. In particular, G is in fact a quotient
of (Z/2)? x ((Z/2) x Z9) x Z9, and the above relations (and thus the structure of B, ,,(N,)/I3)
depend only on the parity of m and n. Moreover, since a2, = 1, we are left with showing that a;o
is not trivial in G.

Suppose first than m and n are both even. Then the relations become ¢f - -- 2 = (¢})*--- (¢})* = 1.
Thus, if A denotes the abelian group 71 (N, ) = 79/(2,2, ...,2), we have G 2 (Z/2)? x ((Z/2) x

A) x A, whose commutator subgroup is cyclic of order 2, generated by a5.

If m and n have different parities, we can assume (by symmetry) that m is odd and n is even.
Then the relations become (¢})?---(¢;)* =1 and ¢f -5 = arp. In (Z/2)* x ((Z/2) x Z9) x 79,
the cyclic subgroup generated by ¢? - - - cgaﬁl is normal (it is even central). Thus, if we denote by
A the abelian group Z9/(4,4, ...,4), we have G = (Z/2)? x A x A, whose commutator subgroup is
cyclic of order 2, generated by a2 (which identifies with the class of (2,2, ...,2) in A).

If m and n are both odd, then the relations become ¢f ---¢2 = (})? -+ (¢})? = a12. In this case,
there is no obvious semi-direct product decomposition of G where a5 is clearly non-trivial, so we
need another argument to show that ajs # 1. If g = 1, one can see that G = (Z/2)? x Qs, where c;
is sent to 4, ¢} is sent to j, and a2 identifies with the central element —1 of the quaternion group
Qs. For g > 1, we can find a similar quotient of G, by considering the quotient Qf/H, where H is
the hyperplane of Z(Q%) = (Z/2)9 defined by the vanishing of the sum of the coordinates. Since
H is central in Q, it is normal. Moreover, Qf decomposes as a central extension of (Z/2)%9 by

(Z/2)9, which induces a central extension:
(Z)2)9/H =2 7)2 — Q/H — (Z/2)%.

Using the presentation of G, we can see that there is a well-defined projection from G onto Qf/H
sending ¢, to (1,...,1,4,1,...,1), ¢. to (1,...,1,4,1,...,1) (where the non-trivial coordinate is the
r-th one in both cases), and s; and sy to 1. This projection sends a1z = [¢1,¢}] to the generator
of the center (Z/2)9/H = Z/2. Thus a5 is again not trivial in G, whence our claim. O

Corollary 6.39 Let g > 0 and let A = (ni,...,n;) be a partition whose blocks are of size at
least 3. Then Lo(BA(N,)) = (Z/2)"=1/2 s the free elementary abelian 2-group on the a;; for
1<i< <l

Proof. The proof is again the same as the proofs of Propositions 3.4 and 6.33, using the canonical

maps La(Ba(Ny)) — L2(By, n;(Ng)) = Z/2, where the later is generated by the image of a;;, by
Proposition 6.38. O
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6.5 Partitions with small blocks

Now that we have a complete description of the lower central series of By (S) in the stable case,
that is, when the blocks of the partition A have size at least 3 (§6.4), we turn our attention to the
cases when \ does have blocks of size 1 or 2. Then we ask ourselves: under this assumption, when
does the lower central series of B (S) stop? For most surfaces, it does not; see Proposition 6.40.
In fact, there are only six surfaces to which this result does not apply. One of them is the disc, for
which an answer has already been given in §3. Another one is the cylinder, which case can easily
be deduced from the case of the disc. Four surfaces remain: the torus T? (see §6.5.2), the Mobius
strip M2 (see §6.5.3), the sphere S? (see §6.5.4) and the projective plane P? (see §6.5.5).

6.5.1 The generic cases

As a direct corollary of Propositions 6.16 and 6.17, we get the following result:
Proposition 6.40 Let A = (ny,...,n;) be a partition of an integer n > 1.

o If X\ has at least one block of size 1 and 71(S) is not abelian (that is, if we suppose that
S ¢ {D — pt,D,S% T2, P2, M?} up to isotopy equivalence), then the lower central series of
B, (S) does not stop.

o If X has at least one block of size 2 and 71 (S)*" is not finite (that is, S ¢ {D,S? P?}), then
the lower central series of BA(S) does not stop.

Proof. In the first case, there is a surjection By(S) — B1(S) = m1(S5), and in the second one,
a surjection By (S) — By(S). Propositions 6.16 and 6.17 say that, under our hypotheses, the
lower central series of the quotient does not stop in either case. The result then follows from
Lemma 1.1. [

Thus the question of whether the lower central series of B (S) stops has been answered for every
partition, except for the six surfaces D — pt, D, S?, T?, P? and M?. In fact, By(D) = B has
already been considered in §3; see Theorem 3.5. Also, since B (D) = {1}, we have an isomorphism
Bi(D — pt) = By (D) for every partition A by Proposition 6.25, so that we can deduce the
remaining answer for D — pt from the answer for the disc. Namely, Lemma 3.7 and Proposition 3.9
imply:

Lemma 6.41 If A has at least two blocks of size 1, then the lower central series of By(ID — pt)
does not stop. If A = (1,ng,...,n;) where every n; > 3, then its lower central series stops at Is.

Therefore, we are left with four remaining cases: the torus, the M&bius strip, the sphere and the
projective plane.

6.5.2 Partitioned braids on the torus

We know that the lower central series of By (T?) stops if A has only blocks of size at least 3, and
that it does not if there is at least one block of size 2. The remaining cases are dealt with using
the following generalisation of [BGGO08, Lem. 17]:

Proposition 6.42 Let u be any partition. There is an isomorphism By ,(T?) = B,,(T? —pt) x Z?.
Proof. Proposition 6.25 gives a short exact sequence:

B, (T? — pt) —— By ,(T?) — m (T?) 2 Z2
Let n > 2 such that p is a partition of n — 1. The center of B,,(T?) is generated by two braids
a and B corresponding to rotating all the punctures along each factor of S! x S!; see [PROO,

Prop. 4.2]. These are pure braids, so they are in the subgroup By ,(T?) of B,(S). The above
projection (forgetting all strands but one) maps these two elements to a basis of m;(T?) = Z2. As
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a consequence, it restricts to an isomorphism (o, 3) = Z2. Thus the above short exact sequence
splits, and the corresponding action of Z? is trivial (o and § being central), hence it is in fact a
direct product. O

It is then an easy task to finish proving the following:
Theorem 6.43 Let X\ be a partition of an integer n > 1. The lower central series of By (T?):

o does not stop if A has at least two blocks of size 1 or at least one block of size 2.
o stops at Iy in all the other cases, except for B1(T?) = Z2.

Proof. If X has at least two blocks of size 1, then B, (T?) surjects onto By 1 (T?), which is isomorphic
to B1(T? — pt) x Z? = Fy x Z* by Proposition 6.42. The lower central series of Fy does not stop,
whence the result in this case, by Lemma 1.1.

If X has exactly one block of size 1 and no block of size 2, then Proposition 6.42 gives an isomorphism
B\ (T?) = B,,(T? — pt) x Z* where p has only blocks of size at least 3. Then Corollary 6.29 implies
that the lower central series stops at most at I3 in this case. In fact, if p is non-trivial, then the
lower central series of B, (T? — pt) stops exactly at I's; see Theorem 6.30.

The other cases have already been treated as part of Corollary 6.29, Theorem 6.30 and Proposi-
tion 6.40. O

6.5.3 Partitioned braids on the Mobius strip

As in the case of the torus, we know that the lower central series of By (M?) stops if A has only
blocks of size at least 3, and that it does not if there is at least one block of size 2. The only
remaining cases are the ones when \ has some blocks of size 1, the other ones being of size at least
3. We begin by showing that the lower central series does not stop when there are at least two
blocks of size 1. In this case, B, (M?) surjects onto By 1(M?) = Po(M?), so this case follows by
Lemma 1.1 from the following study of Po(M?):

Lemma 6.44 A presentation of the pure braid group Py(M?) is given by generators vi,72, A
subject to the relations

nAn ! =73 A e
e = AT
Proof. Proposition 6.25 gives a decomposition Py(M?) = 71 (M2 — pt) x 71 (M?) & Fy x Z, where

the projection onto 71 (M?) = Z is given by forgetting one strand (say, the first one). Then the

factor Z is generated by v := cgl), and a free basis of the factor Fy is given by o := cg ) and

A = Aj5 (where we use notations from §A.2). Moreover, the action of v; by conjugation on (A, o)
is not difficult to compute. Namely, we have v Ay; 1 - Yo 1 A=1~,: see Figure 6.3. Then, from
Figure 6.1, we get that [’yg,vfl] = A, which is equivalent to 'yl'yzwfl = 'ylA'yflvg. Using the
previous relation, the latter equals 75 lA_lfyg. These relations determine Po(M?), since the group
G that they define decomposes as (A, ¥2) % (71), and the obvious projection of G' onto Po(M?) must

be an isomorphism on both the kernel and the quotient, hence it must be an isomorphism. O
Figure 6.3 Relation in Py(M 'ylA'yl = 2

Corollary 6.45 The lower central series of Po(M?) does not stop.
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Proof. Let us consider the quotient of Po(M?) = FoxZ by I»(F5). It is Z2 x Z, where the generator
7, of Z acts via the involution 7 sending A to —A and 7, to 75 — A. Then V :=Im(7 — 1) is Z- A.
By Proposition B.10, for i > 2, we have I';(Z? x Z) = 272V, so the lower central series of Z2 x Z
does not stop. Thus the lower central series of Po(M?) does not either. O

The answer for the remaining cases are consequences of the following result:

Proposition 6.46 For m > 3 an integer, the lower central series of By ,m,(M?) does not stop.

Proof. We can use Proposition 6.25 to get a decomposition:
B, (M?) = B,,(M? — pt) x m (M?),

where 71 (M?) 2 Z is identified with the subgroup of B ,,(M?) generated by 77 := cgl). We know
that I's (B, (M?)) contains I's (B,,(M? — pt)). The latter is fully invariant in B,,(M? — pt),
hence normal in By ,,,(M?), and we can consider the quotient

G =By, (M?) /T (B,,(M? — pt)) = (B,,,(M? — pt)/Ty,) x Z.
Moreover, Lemma 6.12 and Remark 6.14 give a central extension:
(o) —— B, (M? — pt) /e — 7 (M? — pt)2b.

The element ¢ is the common class of the usual generators o, of B,,. Since these commute with
y1 in By, (M?), o is central not only in B,,,(M? — pt)/I'w, but in fact in G. In particular, (o) is
normal in G, and the quotient decomposes as:

G/o = [(Bu(M? — pt)/I'x) /o] 1 (M?) 2 m (M? — pt)*® x 71 (M?) 2 Z* x Z.

A basis of the Z? factor is given by 73 and A = A;5. Consider the morphism Po(M?) — By ,,,(M?)
corresponding to adding m — 1 trivial strands to the second block (constructed as in the proof of
Proposition 6.25). Composing with the projection, we get a morphism from Py(M?) = Fy x Z to
G /o = 7? x Z. From the explicit description of both these groups, one easily sees that it has to
induce an isomorphism Py (M?2)/I%(F2) = G/o. But the lower central series of Po(M?)/I%(F2)
does not stop (see the proof of Corollary 6.45), so we have found a quotient of By ,,(M?) whose
lower central series does not stop, whence the result. O

Let us sum up our results about the lower central series of By (M?):

Theorem 6.47 Let A = (nq,...,n;) be a partition of an integer n > 1. The lower central series of
B)\(MQ).'

o does not stop if A has at least one block of size 1 or 2, except for B;(M?) = Z.
e stops in all the other cases, at I's if | > 2 and at I if | = 1.

Proof. The first statement follows from Proposition 6.40 (for blocks of size 2) and from Corollary
6.45 and Proposition 6.46 (for blocks of size 1). The second one is part of the general results of
Corollary 6.29 and Theorem 6.30. O

6.5.4 Partitioned braids on the sphere

For any partition A = (nq,...,n;), the inclusion of the disc into the sphere induces a surjection
B, — B\ (S?) by Corollary A.22. We can thus apply Lemma 1.1 to deduce that the lower central
series of B (S?) stops whenever the one of By does. Namely, by Theorem 3.5, it stops at I if
n; > 3 for all i, save at most two indices for which n; = 1. Since the abelianisation of By(S?) has
already been computed in Proposition 6.26, we have a complete description of the lower central
series in these cases.
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The above argument can be extended somewhat if we remark that, because of Proposition 6.25,
B (S?) = m1(S?) = {1} is the cokernel of the canonical morphism B, (D) — By ,(S?) (for any
partition p), which is thus surjective. As a consequence, the lower central series of B (S?) also
stops at I's when A has three blocks of size 1, the other ones being of size at least 3. This proves the
results of the first point in the following theorem, the other ones being the point of the remainder
of this section.

Theorem 6.48 Let n > 1 be an integer, let A = (ny,...,ny) be a partition of n. The lower central
series of B(S?):

o stops at Iy if n; > 3 for all i, save at most three indices for which n; = 1.
o does not stop in all the other cases, except for Ba(S?) = Z/2, Bo1(S?) = Z/4 and the
Bg,m(SQ) with m 2 3, whose lower central series stops at L'y, (my+1 07 al Ly, (m)42-

Proof. The first part has just been proved. Let us indicate how we deduce the second one from
the results below.

If X\ has at least four blocks of size 1, then B (S?) surjects onto the pure braid group P4(S?) (by
forgetting the other blocks). Using Lemma 1.1, the result in this case follows from Lemma 6.49.

The remaining cases are the ones where there is at least one block of size 2. If the partition has at
least three blocks, the result follows from 6.50. If the partition has exactly two blocks, and if the
size of the other block is at least 2, then we can apply either Proposition 6.51 or Proposition 6.53.

Finally, let us compute Bg 1(S?) and B5(S?). As recalled in the proof of Lemma 6.49, P3(S?) =
71 (SO3(R)) = Z/2, so that By 1(S?) is an extension of &3 = Z/2 by Z/2. Thus, it must be
isomorphic to (Z/2)? or to Z/4. In order to decide between the two, one can use the computation
of B;}’l from Proposition 6.11, and find that B 1 (S?) = Z/4. As for B2(S?), we use Proposition 6.25
to get an exact sequence m; (S% — {pt}) — P2(S?) — 71(S?), which implies that P5(S?) = 1, whence
B, (S?) = &,. O

Blocks of size 1. We need to consider the case of the pure braid group on four strands:

Lemma 6.49 The lower central series of P4(S?) does not stop.

Proof. We give a sketch of proof of the decomposition of P4(S?) given in [GG04b, Th. 4]. We
recall that we have a short exact sequence by Proposition 6.25:

P (S? — {3 pts}) — P4(S?) - P3(S?).

It is known that P3(S?) = Z/2. In fact, an isomorphism between m;(SO3(R)) and P3(S?) is
induced by ¢ — (¢(e1), p(ea), p(e3)) from SO3(R) to F3(S?). Moreover, a splitting of the above
short exact sequence is given by sending the generator of P3(S?) to the full twist. Since the latter is
central, P4(S?) is the direct product of Z/2 with 7 (S? — {3 pts}) = Fa. Thus P4(S?) is residually
nilpotent (but not nilpotent), whence the result. O

Blocks of size 2. Let us begin with the case where the partition has at least three blocks:

Proposition 6.50 Let A be a partition of n with at least three blocks, and at least one block of size
2. Then the lower central series of B(S?) does not stop.

Proof. Let u be any partition. Let us consider the quotient Bs ,,(S?)/I2(B1,1,,(S?)), which is
(clearly) an extension:

BLL“(SQ)ab — G = BQM(SQ)/FQ(BLL“(SQ)) —_—> 62. (62)

Let us fix (n1,...,n;) :== (1,1, ). From a presentation of the kernel (from Proposition 6.11) and
a presentation of the quotient, using the method from §A.3, we can write down a presentation

55



of G. Precisely, G admits the presentation with generators s, s; (for 1 < ¢ < [), and a;; (for
1 <1< j <), subject to the following relations:

(1) s*=ai,
(2) s;=1 ifn; =1,
(3)  [5::85] = [54, apg] = lapg aue] =1 Vi, j,p,q,u, v,
(4) [s,s5]=1 Vi>1,
(5) [s,ai] =1 Vi >i>3,
(6) sai;js~' =ag; and sagjsTt =ay; Vj =3,
(7) 2(n;, —1)s; + > nja;; =0 Vi>1,
J#i

where the last relation uses additive notations in the abelian subgroup generated by the s; and
the Ajj-

Consider the subgroup H of G generated by s? together with the s; and the a;; for i, > 3. One
can easily see that it is central in G. Moreover, we can deduce from the presentation of G a
presentation of G/H, which turns out to be very simple. Indeed, it is generated by s, the ay; and
the ag; for i > 3. Moreover, since n; = ny = 1, for ¢ > 3 the last relation becomes a1; + ag; = 0,
which means that a;; and ag; are inverse to each other. For i € {1,2}, we find the relations
>.njai; = 0 and ) njag; = 0, which are equivalent to each other modulo the previous relations.
Thus, if we denote by a; the element aq; = a;il of G/H, we get that G/H is generated by as, a4,
..., a; and s, subject to the relations:

(1) =1

(3) ai,a;] =1 Vi, 7,
(6) sajs!= aj_1 Vi =3,
(7)  Xmja; =0

Finally, G/H = A x (Z/2), where A is the quotient of the free abelian group on as, a4, ...,a; by
the single relation ) nja; = 0, and Z/2 acts on A via —id. We can use Corollary B.8 to compute
the lower central series of G/H. Namely, since A & Z!=3 x Z/ gcd(n;), it does not stop whenever
{ > 3. Thus, we have found a quotient of By ;, having a non-stopping lower central series whenever
w1 has at least two blocks. O

If A has only two blocks, we first assume that the other block is large enough:

Proposition 6.51 Let m > 3 be an integer. The lower central series of Ba m (S?) stops at Ly (m)+1
or at I'y,(m)42, where va is the 2-adic valuation.

Proof. We have seen above that the lower central series of Bj 1,,(S?) (which is a quotient of
B11,m) stops at Iy if m > 3. Then, as in the proof of Proposition 3.11, we have that ' (B2, (S?))
contains ' (B1,1,m(S?)) = I2(B1,1,m(S?)). Then it is enough to show that the lower central series
of G 1= Ba,;,(S?)/I2(B1,1,m(S?)) stops. In order to do this, we use the calculations already made
in the course of the proof of Proposition 6.50: the group G is a central extension of (Z/m) x (Z/2),
where Z/2 acts via —id. Thanks to Corollary B.8, we know that the lower central series of the
latter is given by I = 2¢71Z/m for i > 2. Hence it stops at I if m is odd, and in general, it
stops at I, (m)+1- Now, we can use Corollary 1.3 to see that the lower central series of its central
extension G stops at Iy, ()41 OF at Ly, (m)42- O

Remark 6.52 It seems difficult to decide between the two possibilities, although our experimental
calculations using GAP [GAP21] and the package NQ [Nic96] suggest that the lower central series
of G (and hence also the one of By ,,,(S?)) always stops at Iy, (m)+2-

Finally, let us show that the lower central series of B 2(S?) does not stop, using Lemma 1.1.

Namely, we are looking for a quotient of Bg 2(S?) whose lower central series does not stop. As
a manageable non-abelian quotient, one can think of Bg 2(S?)/I2(P4(S?)), which is an extension
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of Gy x &y by P4(S?)?P. In fact, in order to make it even more manageable, we take a further
quotient, turning it into a split extension to which the methods of the appendix apply.

Proposition 6.53 The lower central series of B2 2(S?) does not stop.

Proof. We recall that I5(P4(S?)) is fully invariant in P4(S?), thus normal in By 5(S?), so the
quotient G' = By 2(S?)/I2(P4(S?)) is a well-defined extension of G2 x &y by P4(S?)2P. The latter
it is the abelian group generated by a;; for 1 < i < j < 4, subject to the four relations Z#i a;; =0
(for each i < 4); this classical computation is part of Proposition 6.11.

The action of By 2(S?) on P4(S?)2P induced by conjugation factors through B 2(S?)/P4(S?) =
Sy x Gy. This action is by permutation of the indices of the generators a;; of P,(S?)*. In
particular, it fixes a1 and asyq, which then generate a central subgroup H of G. Let us consider

the quotient by this central subgroup, that is, the quotient of Bs2(S?) by its subgroup H =
(Aya, Azq, I5(P4(S?))). This quotient is an extension:

P4(82)ab/H — G/H E— 62 X 62.

By definition of H, we have 73 = g2 = 1 in By(S?)/H = G/H, so this short exact sequence
splits. Moreover, P4(S?)*"/H is the quotient of P4(S?)*" by the relations a2 = az4 = 0, modulo
which the relations defining P4(S?)*" become a13 = —a14 = a13 = —ag3. Thus P4 (S?)**/H = 7,
and G/H = 7 x (S3)?, where both transpositions act via a sign. This action factors through
the signature e: Gy x &y —» Z/2, so that ['S2%%2(Z) = F*Z/Q(Z); see §B.1 for the definition of
relative lower central series. From Lemma B.4 (whose proof could alternatively be repeated in this
situation), we get that for i > 2, we have I;(Z x (63)?) = 2°71Z, so the lower central series of
Byo/H = G/H does not stop. U

6.5.5 Partitioned braids on the projective plane

We use the notation of §A.2 for braids on non-orientable surfaces, with one slight modification:
since there is only one crosscap, we denote cga) by Yo

We now prove the following theorem, which says when the lower central series of B (P?) stops,
except for Ba ,,,(P?) with m > 3 (for this case, see Conjecture 6.71):

Theorem 6.54 Let n > 1 be an integer, let A = (nq,...,n;) be a partition of n. The lower central
series of By(P?):

o stops at I if | = 1, except for Bo(P?), which is 3-nilpotent.
o stops at Iy if Il > 2 and n; = 3 for all 7.
e does not stop in all the other cases where | > 3.

Moreover, the lower central series of Bl’m(IP’Q) stops at Ly, (m)+2 0T at Ly, (m)+3 if m = 3, does not
stop if m = 2 and stops at I's if m = 1. The lower central series of B 2(P?) does not stop.

Proof. The first two statements are part of the general results of Corollary 6.29 and Theorem 6.30,
except for By (P?) 2 Z/2 and By(IP?), which is the dicyclic group of order 16 (Corollary 6.59). The
third statement combines Propositions 6.56 (if A has blocks of size 1) and 6.60 (if A has blocks of size
2). The fourth statement combines Propositions 6.57 and 6.65 and the fact that By 1 (P?) = Py (P?)
is the quaternion group Qg (Corollary 6.59). The final statement is Proposition 6.68. O

Blocks of size 1. In order to study partitioned braids with blocks of size 1 on the projective
plane, we need to know what the Fadell-Neuwirth exact sequence becomes in the exceptional case
n = 1 of Proposition 6.25.

Proposition 6.55 For any partition p of an integer m, we have a short exact sequence:
B, (M?)/¢2 —— By ,(P?) — m(P?) = Z/2,

where & is the central element of BH(M2) given by all the strands going once along OM?.
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Sketch of proof. One needs to show that &2 is the image of a generator of 75 (IP?) by the connecting
morphism in the long exact sequence of the proof of Proposition 6.25. A generator of 75 (IP?) is given
by the canonical projection S? —» P2, which can be lifted to a map from the disk D to F,,,11(P?) as
follows. Let 7 denote the projection of D onto S? = /D sending JD to the south pole P = —N.
Let p: D — SO3(R) be the unique continuous function sending each z € D° to the rotation of
axis N x w(x) and angle (N, 7(z)) (so that p(z)(N) = n(z)). Let ev: SO3(R) — Fy,41(P?) be
evaluation at a base configuration whose first element is £N. Then ev o p is the required lift.
Moreover, when z goes once around 0D, then p(x) goes twice around the circle of rotations of
angle 7 with axis orthogonal to N. Since P? is to be thought of as the quotient of the Mé&bius strip
by its boundary (which goes to =N, this circle of rotations evaluates to the element & described
in the statement. O

Proposition 6.56 Let u be a partition having at least two blocks. Then the lower central series
of B1,,(P?) does not stop.

Proof. We use the extension from Proposition 6.55:
B, (M?)/¢2 —— By, (P?) —» mi(P?) = Z/2.

We denote the partition A := (1, ) of the integer n by (n,...,n;), and we denote by I’ the number
of indices ¢ such that n; > 2. Using notations from the §A.2 (changed to v; := cgl)), we have that
the quotient in the previous extension is generated by the class of 71, and we can write £ as the

following product of commuting braids:
¢ =172 (Aiisr- Ain)
i=2

Let us consider the quotient G' of By, (P?) by I3(B,(M?)/¢?). It is an extension of Z/2 by
B, (M?)2P /2. We recall from Proposition 6.26 that:

B, (M?)* > 771 x (7/2)" .

A basis of the first factor is given by cs, ..., ¢;, where each ¢; is the common class of the v, with «
in the i-th block of A\. A (Z/2)-basis of the second factor is given by the elements s; described in
Proposition 3.4. The images of the s; in G commute with the class ¢; of 71, since they have lifts
with disjoint support. As a consequence, they are central not only in B, (M?)2P /¢, but in G. Let
them generate the subgroup A of G, and consider G/A. There is an extension:

77126 —— G/A —— Z)/2,

where £ = 2Zi>2 n;c;. This extension is not split, but we can quotient further to get a split

extension of abelian groups. Namely, we need to kill the element ¢? of G. In order to understand
it, we use the relations from Corollary A.22: 72 = A, -+ Ay in BL#(]P’Z). In G/A, where the
Anp are killed if «, 8 > 2, these relations give A, = Fa2 if a > 2, and

A =7 = An- A = R =2) nie; = L
i>2

In particular, & commutes with ¢1, which implies that it is central in G/A. The quotient H of G /A
by £ is thus a semi-direct product:

H = (7€)« 7)2.

Finally, we need to compute the action of ¢; by conjugation on the other ¢;. We recall that
Y, 771 = Aj o in By ,(P?) by Proposition 6.55 and using the presentation of Lemma 6.44, and
A1 o =752 in H, so that [c;, c;'] = ¢? in H, whence cl_lci_lcl = ¢;, which implies that ¢; acts via
—id on {cg,...,c;) = Z'1 )€ = 7172 x (Z/2). Since we have assumed that | > 3, the lower central
series of H = (Z'=2 x (Z/2)) x (Z/2) does not stop; see Corollary B.6. O
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Proposition 6.57 For m > 3, the lower central series of Blym(]P’z) stops either at Ly, (m)42 or at
R)z(m)—i-?)'

Proof. Again, we use the extension from Proposition 6.55:
B, (M?)/£? —— By (P?) — m(P?) = Z/2.

We recall that, since m > 3, the lower central series of B,,(M?) stops at I; see Theorem 6.19.
Moreover, B,,,(M?2) /Iy, = B,,,(M?)2b = 7 x 7, /2, where the first factor is generated by the common
class v of 7o, ..., Ym+1 (where 7; := c(ll)), and the second factor is generated by the common class
o of the o;; see Proposition 6.11. The image of the central element & of B,,(M?)2® is then:

m(m+ 1)

=2
5 o my,

£E= V2(Ajip1 - Aimg1) " =2my — 2

so that By, (M?)/(£2-Iy) & Z/4m x Z/2. Let us consider the quotient G of By ,,,(P?) by the image
of I'a(B,,(M?)). We recall that the image of I5(B,,(M?)) = I'x(B,,(M?)) is inside ' (B1m (P?)),
so that G and By ,,(P?) have the same associated Lie ring. Now, G is an extension:

Z/Am X L2 —— G — Z /2.

We can already see that G is finite, and deduce that its lower central series stops, so that
I.(B1,,(P?)) stops too. In order to be more precise, let us recall that G = (v,0,v), where
the class of 7; generates the quotient in the previous extension. We note that 77 is in the kernel,
S0 it commutes with v and ¢. Since it obviously commutes with ~1, it is central in G. Moreover,
as in the previous proof, the boundary relations in By ,,, (P?) give:

Y= ’)/722 = Ai,l e Ai,m-i—l = Ai7l fOI‘ 7 2 2, and ’y12 = Al,g ce Al,m—i—l = 72m = g

Thus, the quotient of G by its central subgroup A = (y?™) is an extension of Z/2 by (Z/2m) x Z/2.
Since 7§ = 1 in G/A, this extension splits as a semi-direct product:

G/A= ((Z/2m) X Z)2) X Z]2.
Finally, v; commutes with o, and

ot = 2,71 = A = 42,

which implies that 7{17*171 = . This means that Z/2 acts trivially on the Z/2 factor, and
via —id on the Z/2m factor. Finally, we can compute completely the lower central series of
GJA =2 7Z/)2 x (Z/2m x Z/2) using Corollary B.8. Precisely, I;(G/A) = 271Z/(2m) for i > 2.
Hence it stops at I3 if m is odd and, in general, it stops at I, (;,)+2. Now, we can use Corollary 1.3
to deduce that the lower central series of G (whence the one of By, (P?)) stops at I, ()42 Or at

Fvg(m)+3~

Remark 6.58 Similarly to the situation of Ba ,,,(S?) (see Remark 6.52), it seems difficult to decide
theoretically between the two possibilities in Proposition 6.57. However, based on experimental
calculations using GAP [GAP21] and the package NQ [Nic96], we conjecture that the lower central
series of By ,,,(P?) always stops at Loy (m)+3-

We are left with two cases to consider where there is a block of size 1, namely By 1 (P?) and By »(P?).
The group By 1 (P?) = P5(P?) is isomorphic to the quaternion group Qs (see Corollary 6.59 below),
which is 2-nilpotent, so its lower central series stops at I5. Notice that this means that the
conclusion of Proposition 6.57 is correct also for m = 1, since v2(1) = 0, so that proposition would
assert that the lower central series of B171(IF’2) stops at I or I3. In contrast, we will show that
the lower central series of By 2(IP?) does not stop (Proposition 6.65). The study of this latter case
is postponed, and will be part of our study of B, (P?), of which a presentation will be computed
in Proposition 6.61 for every m > 1.
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Blocks of size 2. We now study the case where there is at least one block with exactly two
strands.

Proposition 6.55 can be used to recover the following classical calculations from [Bus66, p. 87]:

Corollary 6.59 The pure braid group Po(P?) is isomorphic to the quaternion group Qg (which
is 2-nilpotent), and Bo(P?) to the dicyclic group of order 16 (which is 3-nilpotent). Precisely, a
presentation of the latter is:

B,(P?) = (o1, | 77 = [ovmor L ] = o).
Proof. Recall that the dicyclic group of order 16 can be defined by the presentation:
Diclﬁ = <57$7y | ST =Y$s, x2 = y2 = (xy)Q = S2>7

and that it contains the subgroup Qs of quaternions as the index-2 subgroup generated by x and
y. Notice that, modulo the other relations, (zy)? = s? is equivalent to s>z~ lyxs? = s2, which is
equivalent to [y, 771] = s? by passing to the inverses. We can also use the first relation to eliminate

= sxs~'. As a consequence, we also have:
Dicig = (s, | 2° = [szs™', 27" = %),

It is easy to check that the elements oy, and v, of By(P?) satisfy the above relations, so that
s+ o1 and z — 1 define a morphism ¢ from Dicig to By (]P’z). Indeed, the relation 712 = o% is
one of the boundary relations from Corollary A.18, and an isotopy witnessing the last one is drawn

in Figure 6.1. Note that ¢ sends the element y = szs~! to 017101_1 = 5.

By taking m = n = 1, the short exact sequence of Proposition 6.55 specialises to:
T (M?)/€2 2 Z/4 —— Po(P?) — m1(P?) 2 Z/2.

Indeed, B;(M?) = m;(M?) is isomorphic to Z, and the element &, which is a loop parallel to the
boundary of the Mobius strip, is the square of a generator. From this, we deduce that P (P?)
has eight elements, and that it is generated by ; (the image of a generator of 71 (M?)) and s
(a lift of the generator of m;(P?)). As a consequence, ¢ must induce an isomorphism between
Qs = (z,y) C Dicig and P(P?). Then, we can use the usual extension

PQ(PQ) —> BQ(IP)Q) e 62

to deduce that 0,7 and v2 generate Bo(PP?), and that Bo(P?) has sixteen elements. Hence ¢ is
an isomorphism. O

We first deal with the case where there are at least three blocks:

Proposition 6.60 Let pu be a partition having at least two blocks. Then the lower central series
of By ,,(P?) does not stop.

Proof. We are looking for a quotient whose lower central series can be computed, and does not
stop. Let us consider the Fadell-Neuwirth extension from Proposition 6.25:

B, (M? — {pt}) —— B ,(P?) — Ba(P?).

We use notations similar to the ones from the proof of Proposition 6.56: we denote the partition

A := (1,1, u) of the integer n by (nq,...,n;), and we denote by I’ the number of indices ¢ such that
n; > 2. We also use notations from §A.2; changed to 7, := cga).

In order to get a more manageable extension, we first take the quotient G of By ,,(P?) by I»(B,, (M?*—
{pt})), getting an extension:

B, (M? — {pt})*» —— G — By(P?).
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The kernel B, (M? — {pt})?" is computed in Proposition 6.26: it is (71 (M2 — {pt})2P)!=2 x (Z/2)",
where the first factor is generated by the classes ¢; of 74, a1; of A1, and ag; of Ag, (for « in
the 4-th block, with ¢ > 3), subject to the relations a1; + ag; = 2¢; (for each i, we get a copy of
71 (M2 — {pt})2P = Z2), and the second one is generated by the classes s; of the o, (for « and a+1
in the i-th block of A, which is possible if n; > 2). The group G is generated by these generators,
together with the classes of o1 and ; (whose images generate By (P?)).

The elements s; commute with the other elements of B, (M2 — {pt})2P (which is abelian), but also
with o1 and v; (for reasons of support). Hence they are central elements of G. Let us denote by
A= (Z/2)" the central subgroup they generate, and let us consider the extension:

7212 G/A B, (P?).

Corollary 6.59 gives a presentation of the quotient, namely:
By (P?) = (o1, m ’ 7i=lomor 0t = 0%>-

We now compute a presentation of G/A, using the tools from §A.3. Generators are ¢;, aj; and
ag; (for 3 < i < 1), together with o1 and ~;. Relations defining the kernel are the ones saying
that the ¢;, the a1; and the ag; commute with each other, together with aq; 4+ as; = 2¢; (for each
i > 3). The latter could be used to eliminate ag; = 2¢; — a1;,. However, we will choose not to do so
here, and to give a redundant, but more tractable presentation of G/A. Relations lifting the above
presentation of the quotient are:

2 _ 2 ns ny
{71 =01 013 Ay

o107ty ] =03

Indeed, these hold in By ,(P?) C B, (P?): the first one is one of the boundary relations from
Corollary A.18, and the second one is the one pictured in Figure 6.1. Moreover, these are clearly
lifts of the relations defining B (P?).

We are left with understanding how o and 1 (whence also v2 = 017107 1) act by conjugation on
the ¢;, the a1; and the as;. We claim that the following relations hold in G/A:

J— — —
{Ulauam(fl, o102 = aor and o1 2 ¢

-1 _ ) -1 _
Moy, - = (—1)"*ar; and yieiy; T = ¢ — a4,

where we use additive notations in the (abelian) subgroup generated by the ¢;, the a;; and the ay;.
These are images of relations holding in By ,, (P2), which can be proved by drawing explicit isotopies.
Precisely, the first one comes from UlAliofl = As;, the second one from UlAgiafl = A;Z-IAMA%
and the third one from the commutation of o1 with all the ~y, if o > 3. The other relation comes
from 7, commuting with As;, and from [y;,v; '] = Ay; (Figure 6.1), that is, v, 'yiy1 = AL v
Notice that the relation involving y1a1,v; ! can be deduced from the other two, using a1; = 2¢; —ao;.

We now have a presentation of G/A. In order to get a simpler quotient, we quotient further by o
and v7. That is, we add the relations o7 = 7% = 1 to the previous presentation. The result is a

split extension:
1 l
720-2) (Z niay; = Z”ia?i = 0> X W.
i=3

=3

If we quotient further by > n,;c; (which is central in the above semi-direct product, since it is fixed
by the action of Ws), we obtain a semi-direct product M x Ws, where M has an explicit workable
description. Precisely, as a Wa-representation, M = A® B, where A is the canonical representation
of Wy defined in §B.2.4, and B is the quotient of Z!~2 by the vector (ng,...,n;), seen as a trivial
Wo-representation. Precisely, if e; (i = 3,...,1) is the generating family of B obtained from the
canonical basis of Z2, an isomorphism A ® B = M is given, with the notations from Remark B.15,
by a ® e; — as;, b® e; — a1; and c® e; — ¢;.
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We finally use our hypothesis: since [ > 4, the rank of B is not 0, so it surjects onto Z. Thus, M
surjects onto A ® Z = A (as a Wa-representation), and M x Wj surjects onto A x Wa, whose lower
central series (computed in Proposition B.12) does not stop. O

Now, we are left with the case where there are precisely two blocks, one of which has exactly two
strands. First of all, we give an explicit presentation of the associated group:

Proposition 6.61 Let m > 1 be an integer. The group Bs ., (P?) admits the presentation with
generators 01,03, 04, ..., Om+1, V1, V3 and Asz, subject to the following relations:

(PR1) 04y Omy1 &= 73, A2s;
(PRQ) A23 ;} 0'3’730'3_1;
(]PRS) (0’31423)2 = (A230'3)2;
(PR4) [Jiviafl,vfl] =o0? forie{l,3};
m+1
(PR5) ’712201 < I1 (Uk"'Us)A23(0k"'03)1> 013
k=2
(PR6) 01 & 03,04,y Omi1,7Y3;
(PR7) 71 & 03,04, .., O, Aas;
m—+1
(PR8) ~2 = (07 ' A2301)Asz - [[ (0% 04)02(oh - 04)7Y;
k=3
(PRY) [v3,71 '] = 07 "As301.

Remark 6.62 This set of generators is not minimal, although it is close to being minimal. Indeed,
we can eliminate Aoz using (PR9). The set of generators thus obtained is then minimal, at least
for m = 1,2, since the classes of the generators are a Z/2-basis of the abelianisation in this case.
However, this elimination would render the relations much less tractable; the above seems a better
compromise between the number of generators and readability of the relations.

Proof of Proposition 6.61. Let us begin by checking that these relations hold for the usual elements
01,03,04, ooy Omt1, Y1, V3 and Asg of B27m(P2). Let us first remark that we can express other
usual elements in terms of these elements. Namely, A1 = 0'1_1A23O'1 and, if k € {3,...,m + 2},
i (resp. Aok, Ajk) is obtained from ~3 (resp. Ass, A13) by conjugation by oy --- o4 on the left
(by convention, this product equals 1 if £ = 3). Then one can see that (PR5) and (PRS8) are the
boundary relations from Corollary A.18, corresponding to the strands 1 and 3 (recall that A;o = o
and that o1 commutes with o3, ..., 04, 41). All the other relations can be checked by drawing explicit
isotopies. Precisely, the relations (PR1), (PR2), (PR6) and (PR7) are commutation relations
between elements having “disjoint support”; (PR4) and (PR9) are instances of the relation drawn
in Figure 6.1; (PR3) can either be proved by drawing an explicit isotopy, or it can be deduced from
the similar relation in By o (see Lemma 3.15), by considering the morphism from By  to Ba ,, (P?)
induced by a well-chosen embedding of I into P2.

In order to show that these relations describe the group, we now apply the methods of §A.3 to the
Fadell-Neuwirth extension from Proposition 6.25:

B,,(P?2 — {2 pts}) —— B (P?) — Ba(P?).

Since P? — {2 pts} = N 2, a presentation of the kernel is given by Proposition A.16, for n = 1. In
order for it to identify with the right subgroup of Bs ,,,(P?) (corresponding to braids on the strands
3,...,m+2), indices are shifted by 2 (so that, for instance, ¢c; becomes v3), and we take z; = Aag;
this last choice changes the presentation a little bit, but one can easily figure out the necessary
modifications. Thus, (BN1) and (BNy) give (PR1); (BN2) and (BN6) are empty; (BN3) is the
case i = 3 of (PR4); (BN5) is (PR2); finally, (BNT) is the case i = 3 of (PR3).

A presentation of the quotient is given by Corollary 6.59 and its proof:

By(P?) = (01,71,% | o111 = 1201, 71 =75 = [12,71 '] = 05).
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Notice that we can eliminate v2 = 011107 L %o get:

By(P?) = (o1,71,7% | 71 = loimor Lyl =01).

The elements 1,01 € Ba,,(P?) are lifts of the elements 1,01 € Ba(P?). The second relation
holds without change for these lifts, giving the case i = 1 of (PR4). The relation v = o? lifts to
the boundary relation associated with the first strand, which is (PR5).

We are left with finding relations describing the action of o1 and v (or of o= and 1) by
conjugation on the other generators. The commutation relations (PR6) and (PR7) are describing
most of it. Only two elements still need to be expressed in terms of the generators os, ..., 0m+1,
v3 and Agz of the kernel, namely o7 'Asz0; and 77 'y37y:. The boundary relation (PRS) deals
with o] ' Agz01. Finally, (PR9) deals with ~v; 'y371: it says that v, ‘9371 = y307 " Agzor, which
is equivalent to an expression of 01 Asz0] Lin terms of the generators of the kernel, modulo the
previous relation (PR8). This finishes the proof that the above relations are the ones obtained
using the method of §A.3, whence the result. O

Let us now consider the case m = 1. In this case, there is no o; for i > 3, so the presentation is
much simpler; in fact, in the extension of the proof, the kernel is just m;(P? — {2 pts}), which is
free on 3 and Ass. Thus, (PR1), (PR2) and (PR3) are empty in this case, and there is no case
i =3 in (PR4). The other relations reduce to:

Corollary 6.63 The group B2,1(IP’2) has a presentation with 4 generators o1, Y1, v3 and Az and
6 relations (indexed as above):

(4) [oimor 'Y =0t (7) m = As;
(5) i = o142301; (8) 72 =0y Agzoy Asa;
(6) o1 = 73 9) [y3,71 '] =01 " Aszo.

Remark 6.64 This is better than Van Buskirk’s presentation from [Bus66, Lem. p. 84], which has
6 generators and 13 relations. Note that in our language, his generators are as follows, where the
right-hand side of each equation uses our notation and the left-hand side uses his:

02 =01, P1 =73,
-1 —14-1
a2 = 0 Azz0oq, P2 = Y101 A23 01,
-1
as = Aos, p3 = 0y 71071.

Proposition 6.65 The lower central series of B 1(P?) does not stop.

Proof. Let G be the quotient of BLQ(]P’Q) by the single relation 017101_1 = 71_1. Let us consider
the presentation of G given by the presentation of Corollary 6.63, to which this relation is added.
Then relation (4) becomes o7 = 1, that is, o] ' = o;. Relation (5) becomes Aoz = 017701 = 7{27
hence (7) becomes redundant. Relation (8) is then equivalent to 43 = 1. Relation (9) becomes
Y377 3t = 71 If we add to this relation (6), which says that o) commutes with 3, we get
a presentation of Z x (Z/2)? (where both elements of a basis of (Z/2)? act via —id). Thus,
G = 7 x (Z/2)?, whose lower central series does not stop (one can either compute it with the
method of the appendix, or quotient further by o1 = 73 to get Z x (Z/2) as a quotient, and apply
Corollary B.8). O

Remark 6.66 Even if the imposed relation looks very much like a relation defining the infinite
dihedral group Z x (Z/2), it is not at all clear a priori why adding this one relation should work.
Much experimentation has been needed before ending up here.

Next, let us consider the case m = 2. In this case, there is no o; for ¢ > 4. Thus, (PR1) is empty,

and the boundary relations (PR5) and (PR8) become much simpler. Let us spell out the result in
this case:

63



Corollary 6.67 The group BQ,Q(]P)Q) has a presentation with 5 generators o1, Y1, v3 and Az and
8 relations (indexed as above):

(2) (6) o1 = 03,73

(3) (03423)* = (Ag303)% (7) m 2 03, A9s;

(4) [oivio; ',y =02 forie{1,3} (8) 73 =0y "Ags0o1As303;
(5) 73 = 01430340305 1 oy; 9) [13,71 '] =07 "Asso.
Proposition 6.68 The lower central series of B 2(P?) does not stop.

Proof. Let us consider, as above, the projection p: By 2(P?) — B (P?) & Dicye induced by forget-
ting the last two strands. Recall that Corollary 6.59 gives a presentation of this quotient:

By(P?) = (o1, m ’ vi = ooyt = 0%>-

Since the second relation is already true in Bgo(P?) (it is the case i = 1 of relation (4) in Corol-
lary 6.67), the projection p becomes split if we impose the relation o = v3. We will in fact consider
the quotient G of Ba o(P?) by the two relations:

{(Ql) o2 =%

(Q2) o3yz05 ' =~3"

Since the second relator also sits in the kernel of p, we get a split projection p : G — Bo(P?).

Let us consider the presentation of G given by the presentation of Corollary 6.67, together with the
two relations (Q1) and (Q2). Modulo (Q1), relation (5) becomes o3 As305 " = Ay, Modulo (Q2),
relation (2) says that Ass commutes with 73, and the case i = 3 of relation (4) gives 05 = 1. At this
point, let us remark that the relations obtained so far are saying that the subgroup (73, Ass, o3) is
a quotient of Z2 x (Z/2), where the action of Z/2 is by —id.

Continuing our investigation, we remark that relation (3) is a consequence of the previous relation
(both sides of it are killed modulo these). Relation (8) becomes o} ' Aazo; = 72 A5, and (re-
membering that o3 = 1) relation (9) becomes v; 'y3v1 = A2375 '. If we add relations (6) and (7)
without change, we get a presentation of G, which will allow us to describe it in an explicit way.

Let us first consider the subgroup A := (73, A23) (which is abelian by relation (2)). Relations
(Q2) and (2) imply that it is stable under conjugation by o3 (which equals o=, by (4)). Relations
(6) and (8) imply that it is stable under conjugation by o, ! and also by o; (as one sees by
conjugating (8) by o;, taking (6) into account). In the same way, relations (7) and (9) imply that
it is stable under conjugation by vlﬂ. Finally, all this implies that it is normal in G. Moreover, the
presentation of G/A that we get from the one of G clearly gives G/A = Dicig x (Z/2), and in fact,
the relations defining G/A were already true in G for the generators o1, 71 and o3, so G - G/A
splits, and finally:
G = A x (Dicig X (Z)2)).

We are left with understanding A (which is a quotient of Z?) and the action of K := Dicy % (Z/2)
on it. In order to do this, let us consider the relations describing the action of K on A, namely:

(Q2) osys05 ' =3
(5) o3Agz0o5 " = Ayg;
(6) o107 " = s

(8) o1Asz07 " = Ay 3
(9) mvsn =5 Aes;
(

Y1 Aozyy t = Ass.

9
7

oo
—_ — D D T

We remark that these already define an action of K on Z2, which is exactly the action on Z? =T
considered at the end of §B.2.4. Precisely, with the identifications o1 — o, 73 — v and 03 — T
for generators of K, we get an equivariant map I' - A sending a to Az and ¢ to -3 (with the
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notations of Remark B.15). This induces a surjective morphism from I" x K onto A x K = G. It is
then easy to check that all the relations defining G are in fact already true in I' x K, which allows
us to define a converse isomorphism G = 7Z? x K.

Finally, Proposition B.12, together with the equality I'(A) = I''V2(A) from the end of §B.2.4,
gives us a complete description of the lower central series of G which, in particular, does not
stop. O

Remark 6.69 The projection onto Dicig X (Z/2) in the proof can be seen as coming from the
geometry. Precisely, it is the factorisation through G of the projection

q: B272(P2) —» BQ(PZ) X 62 = DiClG X (Z/Q)

whose first factor forgets the last two strands and whose second factor forgets the first two strands
and then applies the usual projection 7: Bo(P?) — &.

Remark 6.70 This quotient looks very much like the one from the proof of Proposition 6.65, and
the same remark applies (see Remark 6.66). Namely, (Q1) is a natural relation to impose (making
the extension split), whereas it is much less clear why quotienting by (Q2) (which is the same
relation as in the aforementioned proof, up to re-indexing the strands) should work.

The remaining cases to consider are By ,,, (P?) for m > 3. These are the only examples of partitioned
surface braid groups for which we have not been able to answer the question of whether their lower
central series stop. We can still say something about these lower central series, using the proof
of Proposition 6.60. Recall that in this proof, the hypothesis on the number of blocks of y was
not used until the end. Moreover, in the case p = (m) and m > 3, Proposition 6.19 applies,
implying that the first quotient G is the quotient by ', (B,,(M? — {pt})). The latter must be
contained in I'w(Ba,,(P?)) so, in order to understand the lower central series of Bg ,,(P?), we
only need to understand the one of G. Then, the central subgroup A = (s3) = Z/2 (where s3 is
the class of o3) injects into G®> = By ,,,(P?)2P (which was computed in Proposition 6.26), so we
can apply Corollary 1.3 to see that the lower central series of G stops if and only if the one of
G/A does. We have the same presentation of G/A as in the proof of Proposition 6.60, from its
decomposition as an extension of Bo(P?) = Dicig by Z2. Note that the action of Dicyg on the
(abelian) kernel in this extension is exactly the one on A from §B.2.4, which is through the quotient
Dicig — Wa. Precisely, as in the previous proof, a = a3 and ¢ = c3 identify with the basis of A
from Remark B.15. However, this extension is not split, so computing its lower central series seems
tricky. We can try to make it split, by considering the quotient by the relation o2 = 4# (which is
equivalent to a™ = 1), but then we also kill ¢, getting the finite quotient:

(G/A) /iy ? = (A/{ma,2mc)) x Dicig = (Z/m x Z/2m) x Dicye.

In fact, we remark that, using the notations of Proposition B.12, we have (ma, 2mc) = mV C A.
Thus, we can deduce from Proposition B.12 a computation of I'P%16(Z/mxZ/2m) = IV2(A/mV).
Namely, if m = 2¥m/, with m’ odd, we have that 2"V contains mV, and that 2*T'V equals 2"V
modulo mV, so I'V2(A/mV) stops at FQVI[,/iQ (A/mV) =2"V/mV . Finally, the lower central series
of the above quotient stops at I, where k = 2uy(m) + 2 if m is even, and k = 4 is m is odd (in
the latter case, note that the relative lower central series stops at the second step, but Dicyg is
3-nilpotent).

This gives a lower bound for the step at which the lower central series of G stops: it cannot
stop before I, for k = max{4,2vs(m) + 2}. However, this lower bound is far from optimal: our
experimental calculations using GAP [GAP21] and the package NQ [Nic96] show that, for many
small values of m (all of those that we tried), the lower central series of G/A, and hence those of
G and of By ,,(P?), do not stop before I'o9. We thus conjecture:

Conjecture 6.71 Let m > 3 be an integer. The lower central series of Ba ,,(P?) does not stop.
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A Appendix 1: Generators and relations

We recollect here the presentations of several families of groups considered in the paper which are
used for our work.

Notation A.1 We write a = b to denote the relation saying that a and b commute.

A.1 Virtual and welded braids
A.1.1 Presentations

Proposition A.2 ([BB11, Def. 1]) The virtual braid group vB,, admits a presentation given by
a set of generators {o1,...,0n_1} satisfying the relations of the classical braid group B, (corre-
sponding to ordinary crossings in diagrams) and a set of generators {T1,...,Tn_1} which satisfies
the relations of the symmetric group &,, (corresponding to virtual crossings) and two additional
mixed relations:

{(Rl) PE= ifli— k| > 2; A

(R2) 774103 = 0iTiTiv1  ifi€{l,...,n—2}.

Proposition A.3 ([FRR97, §1][BWCO07, Th. 2.1][BH13, Prop. 3.3 and 3.7]) The welded braid group
wB,, admits a presentation given by a set of generators {o1,...,0n,-1} satisfying the relations of
the classical braid group B, and a set of generators {11,...,Tn—1} which satisfies the relations of
the symmetric group S,, and three additional mized relations:

(R1) 0y &= 11 if i —k| =2
(R2) miTip10i = opamitipr ifi €{1,...,n—2}; (A.2)
(R3) 00417 = Tiy1050541 if i €{1,...,n—2}.

Each 7; corresponds to a loop in F,s1 (D3)/&,, that interchanges two unknots without either of
them passing through the other; each o; corresponds to a loop in F,g(D?)/&,, that interchanges
two unknots, while one passes through the other.

The extended welded braid group wB,, admits a presentation with generators and relations of wB,,
plus additional generators {p1,...,pn} satisfying the relations of the abelian group (Z/27)"™ and
five extra mized relations:

(R4) oi = pi if k¢ {i,i+1};

(R5) 7 = pg ifk ¢ {i,i+1};

(R6) 0;p; = pi+10; ified{l,...,n—1}; (A.3)
(R7) Tipi = pit1Ti ified{l,...,n—1};

(R8) 0ipiy1 = pimio; ' difie{l,...,n—1}.

Each p; corresponds to a loop in F,si1(D3)/W,, that rotates a single circle by 180 degrees.

A.1.2 Welded braid diagrams

There is a well-known method of visualising the presentations of §A.1.1 in terms of braid diagrams,
which we recall here.

Notation A.4 We fix the convention that reading a braid word from left to right corresponds to
reading a braid diagram from top to bottom. In §A.1.4, when interpreting (extended) welded braids
as automorphisms of F,,, we will read composition from the right to left (as usual for functions).
Thus braid diagrams, as automorphisms of F,,, are composed from bottom to top.

Proposition A.5 The virtual braid group vB,, consists of braid diagrams with crossings as de-
picted in Figure A.1, up to planar isotopy and:
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classical

XXX

virtual/welded

extended welded

Figure A.1 Crossings and decorations in braid diagrams.

IS N

(Rllc) (RIllc)
(RIly) (RIIly)

Figure A.2 The classical (top row) and virtual (bottom row) Reidemeister-II and -IIT moves.

e the classical and virtual Reidemeister-1I and Reidemeister-1II moves in Figure A.2;
e the virtual move (V) in Figure A.5.

Note that there are obvious variants of these moves that also hold as a consequence. For example,
if we write (V) for the variant of (V) where the classical crossing is reversed, then (V) follows from
(V) and two instances of (RIIl¢). Similarly, if we write (V) for the mirror image of (V), then (V)

follows from (V) and four instances of (RILy).

Proposition A.6 The welded braid group wB,, consists of braid diagrams with crossings as de-
picted in Figure A.1, up to planar isotopy, the moves listed in Proposition A.5 and:
o the welded move (W) in Figure A.3.

Proposition A.7 The extended welded braid group wB,, consists of braid diagrams with crossings

and marked points as depicted in Figure A.1, up to planar isotopy, the moves listed in Propositions
A.5 and A.6, and:

o the extended welded moves in Figures A.4 and A.5.

As above, there are variants of these moves that hold as a consequence; in particular, the mirror
images of (EC), (EW), (ECW) and (ECW)'.

Sketch proof of Propositions A.5-A.7. For vB,,, we translate the presentation (A.1) into diagrams

by sending o, o; L and 7; respectively to the three crossings depicted in Figure A.1, adding i — 1

trivial strands to the left and n — — 1 trivial strands to the right. Concatenation of elements from

PR S

Figure A.3  The virtual (V) and welded (W) moves.
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AEE N

Figure A.4 Three of the four extended welded moves.

(ECW) )
(

Figure A.5 The fourth extended welded move (with two variants).

left to right corresponds to stacking braid diagrams from top to bottom. The classical and virtual
Reidemeister-1I moves correspond to the fact that o, 1 is the inverse of o; and that 7; has order
two. The braid relations in B,, and in &,, correspond to the classical and virtual Reidemeister-I1T
moves. The commutation relations in B,, and in &,,, as well as relation (R1) in (A.1), correspond
to planar isotopy of diagrams. Finally, relation (R2) in (A.1) corresponds to the virtual move (V).

For wB,,, we just add one further relation, (R3) of (A.2), which says that ;0,117 = Ti410;0:+1.
This may be rewritten as ;11 TiU;}l =0, 1Ti+10'i7 which corresponds to the welded move (W).

For wB,,, we add the marked points depicted on the right-hand side of Figure A.1, which correspond
to the generators of (Z/2Z)". The relations of (Z/2Z)™ correspond to the extended welded move
(EE) (the generators have order two) and planar isotopies (the generators pairwise commute). The
relations (R4) and (R5) also correspond to planar isotopies. The relations (R6)—(R8) correspond to
the extended welded moves (EC), (EW) and (ECW). The variant (ECW)’ of (ECW) is actually a
consequence, following from (ECW) along with two instances each of (EW), (RII¢) and (RIly). O

A.1.3 Pure virtual and welded braids

A presentation of the group of pure welded braids has been known since the work of McCool in
the 1980’s, which uses geometric group theory. Another proof was given by Fenn, Rimanyi and
Rourke towards the end of the century [FRRI7]:

Proposition A.8 ([McC86; Gol81]) The pure welded braid group wP,, admits a presentation
given by generators {x;; | 1 < ¢,j < n,i # j} subject to the following relations, fori,j, k,l pairwise
distinct:
(PR1) Xij = Xkt
(PR2) Xik & Xjk (A.4)
(PR3) Xij = XikXjk-
More recently, using the Reidemeister-Schreier method, Bardakov gave a presentation of the pure

virtual braid group, which looks like the previous one, with one relation removed (x;x and x;x no
longer commute):

Proposition A.9 ([Bar04]) The pure virtual braid group vP, admits a presentation given by

generators {x;; | 1 <14,j < m,i# j} subject to the following relations, fori,j, k,1 pairwise distinct:

(A.5)

(PRY) xi5 = Xwis
(PR2/) XijXik Xjk = XjkXikXij+

Corollary A.10 The projection vP,, - wP,, induces an isomorphism vaLb = wPbe; both are
free on the classes of the x;; for 1 <i# j < n.
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Remark A.11 The corollary can also be proved directly: showing that the x;; generate vP,
(hence also wP,,) is not difficult. Then, the linear independence of the classes of the y;; in wP?2P
(hence also in vP?") readily follows from the following fact: for any choice of k # I, there is a
projection my; : wP2 - wP3” = 72 (using wPy = Inn(Fy) = Fy) killing all the x5, save x
and Xz, which are sent to a basis of Z2. Such a projection is induced by the map wP,, — wP,
obtained by forgetting all the strands except the j-th and the k-th ones.

A.1.4 Welded braids as automorphisms of the free group
Let us use the following notations for automorphisms of the free group F,, on n generators z1, ..., x,:

and p;: x; b—>xi_1,
Tip1 > I Tiy1 F— X

Ti: { Ti 7 Tt , O { Li — xilex;l
where it is implicit that the x; that are not mentioned are fixed. The groups wB,, and wB,,
may be seen as subgroups of Aut(F,,) as follows; we refer the reader for further details to [Gol81,
Th. 5.3], or to [Dam17, Cor. 4.3], or else to [FRR97, §1] and [BWCO07, Th. 2.1].

Theorem A.12 The morphism wB,, — wB,, = Aut(F,,) sending 7;, o; and p; to the correspond-
ing automorphisms (as defined above) is a well-defined isomorphism onto its image, which consists
of all automorphisms of the form:

T; — wixf(l)w_l

i)t

with wy,...,w, € F, and 0 € &,,.

In particular, the generators x;; of the pure welded braid group wP,, are identified with:

= xjmixj_l ifk=1
Xij * Tk :
! Ty else.

In particular, we have x; ;41 = 7;0; (where, as usual for functions, composition of automorphisms
is written from right to left).

Remark A.13 Our definition of o; disagrees with the one in [Daml7]; instead it corresponds to
the inverse of the element called o; in [Dam17]. This is because our Aut(F,,) is the opposite group
of the group called Aut(F,,) in [Dam17], since we view composition of automorphisms of F,, from
the right to left, whereas composition of automorphisms goes from left to right in [Daml17]; see
Remark 6.3 of [Dam17]. On the other hand, these considerations about the direction of composition
do not affect the elements 7; and p;, since they are self-inverse. (We warn the reader, however,
that our 7; and p; correspond, respectively, to the elements denoted by p; and 7; in [Dam17].)

A.2 Braids on surfaces

The main tool for determining presentations of surface braid groups (including braids on the disc,
which are usual Artin braids) are the Fadell-Neuwirth exact sequences; see Proposition 6.25. These
were already used in the course of the proof of Proposition 6.8, where they were used to obtain
generators of these groups. Let us now briefly explain how they may be used in order to determine
defining relations on these generators. For S a non-closed surface, these exact sequences give
a decomposition of By ,,_1(S) as a semi-direct product of B,,_1(S) with a free group F. Then
suppose that one has a set of relations satisfied in B,,(5), defining a group G,, and a well-defined
surjection 7: G,, — B, (S). One can consider the subgroup G1,—1 = 7 1(B1,_1(5)), use the
relations to show that it is of index at most n in G, (which implies that the induced surjection
of Gy /G1,n-1 onto B, (S)/B1,,-1(5) is a bijection), and determine a presentation of Gy ,_1 by
using the Reidemeister-Schreier method. Then one shows that G ,,—1 decomposes as a semi-direct
product of a quotient isomorphic to G, —1 with a kernel K generated by a family of elements sent
by 7 to a basis of the free group F. The latter fact implies that this family must be a free basis
of K, which means that 7: K — F is an isomorphism. By induction, 7: G,,—1 — B,,_1(S) is an
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isomorphism. Then 7: Gy ,,—1 — B1,-1(S) must be an isomorphism too. And since the induced
surjection of G, /G1 —1 onto B, (5)/B1 ,—1(S5) is a bijection, 7: G,, = B, (S) is an isomorphism.

This method can be used to get presentations of the braid groups of every non-closed surface of
finite type; see [Bel04] for instance. It can also be adapted to the case of closed surfaces, replacing
semi-direct product decompositions by non-split extensions, with a care for the exceptional cases
where this is not even an extension. However, we give here a direct general argument presenting
B,.(5) as the quotient of B,,(S — pt) by one explicit relation, by applying the Seifert-Van-Kampen
theorem to configuration spaces; see Proposition A.17.

A.2.1 Surfaces with one boundary component

A presentation of braid groups of compact surfaces with one boundary component can be found
in [HLO2, §4] and in [Bel04, Th. 1.1 and A.2]. We re-write them with our own conventions, which
we now explain.

Let us denote by X, 1 the orientable connected compact surface of genus g with one boundary com-
ponent, and by Ny 1 the non-orientable connected compact surface of genus g with one boundary
component. We draw X, 1 as a rectangle with 2g handles attached to it, and N, ; as a rectangle
with g crosscaps. Our notations for braid generators are detailed in Figure A.6. Our drawings of
braids are to be thought of as seen from above, and the left-to-right direction in products corre-
sponds to the foreground-to-background direction in our drawings. For instance, with the notations
of Figure A.6, we have that Ula,(j)al_ = a,(jﬂ). As an illustration of these conventions, we draw
different representations of the pure braid generators in Figure A.7.

1 .

(a) Generators of By, (Zg,1) (b) Generators of By (Ng,1)

Figure A.6 Generators of surface braid groups. For each generator (except for o;, where the
points ¢ and ¢+ 1 move), only one point of the configuration moves, and the others stay put. We often

(1)

x by i, forz =a,b,c

()6><o><9

Figure A.7 The standard pure braid generator A; il = 0’

denote =

Proposition A.14 Let g > 0. A presentation of the braid group on X1, generated by o1, ...,0n_1,
ai,...,aq, b1,...,by, is given by the braid relations for o1, ...,0n—1, to which are added the following
four families of relations (where x and y denote either a or b, and 1 < r,s < g):

(BS1) o; = a, for allr and alli > 2 ;

(BS2) x, = oyys0;" forr <s; (A6)
(BS3) (012,)? = (z,01)%>  forallr; '
(BS4) [o1brort a =02 for allr.

It is easy to check that these relations hold in B, (3, 1) by drawing explicit isotopies. See for
instance Figure 6.2 for a drawing of (BS4) (which generalises to [bgj), (ag»]))_l] =A,ifr <s).
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Proposition A.15 Let g > 0. A presentation of the braid group on Ny 1, generated by o1, ...,0n_1,
C1,...,Cq 15 given by the braid relations for o1,...,0n—1, to which are added the following three
families of relations (where 1 <r,s < g):

(BN1) o0, & ¢, forallr and alli > 2 ;
(BN2) ¢, &= alcsofl forr<s; (A7)
(BN3) [oicro7t, et =02 for all r.
Here again, it is easy to check these relations explicitly. See for instance Figure 6.1 for a drawing
of (BN3) (which generalises to [cgj), (cﬁj))_l] = A5 ifr <s).

Let us denote by Ng 41 the non-orientable connected compact surface of genus g with either
n + 1 punctures or n + 1 boundary components (recall that, up to isotopy, removing a point and
removing an open disc are equivalent). The braid group B,,(Ng n+1) may be seen as a subgroup
of By, 4n(Ng,1); see Proposition 6.25. Namely, this subgroup is generated by o1, ...,0n-1, €1, ..., ¢4
and z; 1= Ay m4; for all 1 < j < n. We need the following result in the proof of Proposition 6.36:

Proposition A.16 Let g > 0 andm > 1. A presentation of the braid group B,,,(Ng n+1), generated
by o1, ..., Om—1,C1, ..., Cg, 21, ..., Zn 18 given by the relations from Proposition A.15, together with the
following four families of relations:

(BN4) zj 2 o; forallj<nandalliec{2,..,m—1};
(BN5) ¢, &2 o1zj00" forallj<nandallr < g ;

(BN6) z = 0’1Zj0'1_1 fori>j;

(BNT) (012)? = (zj01)* for all j < n.

Once more, these relations are easy to check explicitly.

A.2.2 Closed surfaces

When S is a closed surface, one needs to add a single relation to a presentation of B,,(S — pt)
to get a presentation of B, (S). In fact, this is a very general fact, which does not require any
hypothesis on the surface.

Proposition A.17 Let S be a connected surface and x € S any point in its interior. The inclusion
of S —x into S induces a surjective homomorphism

B,(S —z) —» B,(9)

whose kernel is normally generated by a single element 3. Ezplicitly, B is a braid with n — 1 trivial
strands, whose remaining strand loops once around the puncture x.

Proof. Choose a subdisc D C S containing x in its interior, and a metric on D. Write U,, (.S, z) for
the subspace of C,,(S) of configurations that have a unique closest point in D to x (which may be
x itself). Together with C, (S — ), this forms an open cover

{un(sv CL'), Cn(S - .%')}

of C,(S), with intersection U, (S,2) NCp (S — ) = U, (S — x, x) the space of n-point configurations
in S — z that have a unique closest point in D — x to x. Note that these subspaces of C,,(S) are
all path-connected. Let us choose a basepoint for C),(S) that lies in U, (S — x,z). The Seifert-van
Kampen theorem then gives us a pushout square of groups:

T (Un(S — z,2)) —— B,(S —x)

l l (A.8)

T (Un (S, x)) — BL(9).
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There is a well-defined projection U, (S,z) — D given by remembering just the unique closest
point in D to x, which restricts to a projection U,, (S — z,z) - D — x. These are both locally
trivial fibrations with fibres canonically homeomorphic to C,,—1(S — x). (Over a point p € D, the
homeomorphism is induced by the evident homeomorphism between S — x and S — Bd(p’z)(m),
where B, (z) denotes the closed ball of radius 7 in D centered at z and d(—,—) is the metric
that we chose on D.) The inclusion of the latter into the former is therefore a map of locally
trivial fibrations which is the identity on fibres. Considering the induced long exact sequences of
homotopy groups, we obtain a map of exact sequences:

11— Bp1(S—2) — mUn(S —z,2)) — m(D—2)2Z —— 1

=" Pl | (A.9)

~—__ T ___

1 — Bho1(S—2) —— mUn(S,z)) — m (D) =1

The map r obtained from this diagram is a retraction for the upper short exact sequence, whose
existence implies that 7 (U, (S — x,z)) is the direct product of 71 (U, (S,x)) and Z. Then, the
left-hand vertical map in (A.8) identifies with the projection that forgets the Z factor. Together
with the fact that (A.8) is a pushout square, this implies that the right-hand vertical map in (A.8)
is the quotient of B,,(S — x) by (the subgroup normally generated by) the image of the Z factor
of m (Un(S — z,2)) in B, (S — ). We may choose for a generator of this Z factor any element of

1 (Un (S — z, x)) that projects to a generator of m1(D — x), for example the braid described in the
proposition. O

Let us make this explicit:

Corollary A.18 For all g > 0, the braid group B,,(X,) is the quotient of By, (34,1) by the relation:

g
2 1
01 Op-—904 _10p—2- 01 = I I [ar, b, "]

r=1

Similarly, the braid group B,(Ng) is the quotient of B, (Ng 1) by the relation:

[

o1 O-TL—2O.3L—1O-7L—2 o0 = Cl ‘e c?].
We note that we recover as a particular case the usual presentations of the braid group on the
sphere (see [FV62] or [Bir74, Th. 1.11]) and of the projective plane (see [Bus66, §III, page 83]).

Not having to treat these as exceptional cases is one of the great advantages of the present method.

Proof of Corollary A.18. It is a direct application of Proposition A.17, using the fact that ¥, — pt
(resp. Ny—pt) is isotopy equivalent to X, 1 (resp. to Ny 1). We note that oy -+ 0,202 _ 102 01 =
Ajsg -+ Ay, is the (pure) braid obtained by making the first strand turn once around all the other
ones; see Figure A.8 for the relevant drawings. O

A.2.3 Partitioned braids on closed surfaces

The above proof of Proposition A.17 generalises to partitioned braid groups without much diffi-
culty; see Remark A.23. However, we prefer to deduce these generalisations directly from Proposi-
tion A.17 itself. We begin with the case of pure braids by describing a direct equivalence between
Proposition A.17 and the following statement:

Proposition A.19 Let S be a connected surface and x € S any point in its interior. The inclusion
of S — x into S induces a surjective homomorphism

P,.(S—x) > P,(9)

whose kernel is normally generated by n elements B, ..., Bn. FExplicitly, B; is a braid whose i-th
strand loops once around the puncture x, the other strands being trivial.
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Figure A.8 The boundary elements in B, (2,,1) and By, (Ny,1).

Equivalence between Proposition A.17 and Proposition A.19. Let N be the subgroup of B, (S —x)
normally generated by the braid 8 (from Proposition A.17). Note that 8 is a pure braid, hence
we have N C P, (S — z). Now, let N’ be the subgroup of P,,(S — x) normally generated by the
Bi’s. We will show that N = N’. This implies the equivalence of Propositions A.17 and A.19 by
considering the diagram

N’ —— ker(np) —— P, (S —z) /2% P,(95)

| l [

N —— ker(mB) —— Bn(S —z) —2% B,(S)

l l

6, ————=6,

and noting that the two propositions are equivalent, respectively, to the statements N = ker(7p)
and N’ = ker(mp).

Our definitions of 8 and the ; are up to some choices, but all these choices give elements conjugate
to each other (in B, (S — z) or in P, (S — ), respectively) or each other’s inverses, whic@h does
not affect the definition of N and N’. We can make these choices so that:

e the only moving strand of § is the first one,

o [ commutes with every element of the subgroup By ,,_1 = (02, ...,0,-1) of B,,(S — ) (which
consists of braids in a fixed disc D C S — x involving only the strands 2 to n),

o foreach i, B; = (01 0;_1)"'B(0o1+ 0i_1).

See Figure A.9 for an example of such choices. The latter relations imply N’ C N.

We now show that N’ contains all the conjugates of 8 by elements of B,,(S — z), which implies
N’ D N. In order to do this, we need only show that it contains t~! 3¢ for ¢ in a set of representatives
of classes modulo P, (S — z): then every element of B,,(S — x) is of the form ¢« for some such ¢
and some a € P, (S — x), and (ta) 1 f(ta) = a~1(t71Bt)a must be in N'.

Every element 7 € &,, & B,,(S — z)/P,(S — z) is the product of an element 7’ fixing 1 with
some cycle 7 -+ 7,1 (precisely, i = 7(1)). Since 5 commutes with every element of the subgroup
(09, ..c;on—1) C B, (S — ), and since this subgroup surjects onto permutations fixing 1, we can
choose a lift ¢ of 7/ commuting with 3, so that the lift ¢ = t'oy - - 5,1 of 7 to B,,(S — x) satisfies:

t 1Bt = (o1 0i 1) Bt (01 0i1) = (01 0i—1) B0y 04-1) = Bi € N,

whence our result. O

It is not difficult to generalise this to any partitioned braid group:

Corollary A.20 Let S be a connected surface, x € S any point in its interior and A = (nq,...,ny)
be a partition of n of length I. The inclusion of S — x into S induces a surjective homomorphism

B)\(S—LL') —» B,\(S)
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Figure A.9 Braids 8 and B1,. .., B from the proof of the equivalence of Propositions A.17 and A.19.

whose kernel is normally generated by | elements B1,...,0;. Explicitly, B; is a braid with n — 1
trivial strands, except one block in the i-th block which loops once around the puncture x.

Proof. We have P,,(S—z) C BA(S—2) C B,(S—x). As a consequence, if N is a normal subgroup
of P, (S —z) which is normal in B,,(S —x), we have P,,(S —z)/N C Bx(S—x)/N C B,(S—z)/N.
Moreover, normal generators for N in P, (S — x) are also normal generators for N in B (S — z)
and, in fact, fewer generators are needed to generate normally N in By (S — z). Namely, using the
notations from the previous proof, we have 8,11 = 0,404, so that 3,11 and 3, are conjugate
in By (S — x) whenever o, € B)(S — ), which happens when « and «a + 1 are in the same block
of X\. As a consequence, we need to pick only one index « in each block of A in order for the 3, to
normally generate N in By (S — z). O

Remark A.21 This boils down to considering representatives modulo B (S —z) instead of modulo
P, (S—x) (that is, elements of &,,/& instead of &,,) in the previous reasoning. In fact, one can see
that there are straightforward equivalences between all these statements for the different partitions
of n.

Let us make explicit these statements (using the usual convention A;; = A;; and A;; = 1):

Corollary A.22 For all g > 0 and any partition A = (n1,...,n;), the braid group Bx(X,) is the
quotient of Bx(X,.1) by the relations:

g
Aal to Aan = H[a%(“a)7 (bg“a))il}'
r=1

Similarly, the braid group By(Ny) is the quotient of Bx(Ng 1) by the relations:
Ag1 - Agn = (Cga))Z...(C(a))%
In both cases, a runs through any set of representatives of the blocks of A.

Remark A.23 Instead of the reasoning above, one could adapt the proof of Proposition A.17 to
partitioned configuration spaces. Precisely, we get an open cover {U (S, z), Cx(S —x)} of C\(S) =
F,(S)/6, by an obvious adaptation of the definition of U, (S, z). However, this time Uy (S, ) is
disconnected, with one path-component for each block of the partition A\. As a consequence, one
needs to apply the Seifert-van-Kampen theorem once for each path-component of U (S, ), resulting
in taking the quotient of the fundamental group by one additional relation for each application of
the theorem. In doing so, one needs to be careful about basepoints, since one obviously cannot
choose a common basepoint in the different path-components of U (5, z).
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A.3 Presentation of an extension

Let G be a group, which is an extension of a quotient K by a normal subgroup H. Suppose that
presentations of H and K are known, namely H = (X|R) and K = (Y|S), where R is a subset
of the free group F[X] (resp. S C F[Y]). For each y in Y, let us fix a lift § of the corresponding
generator of K to an element of G. Then a presentation of G is given by

G=(XUY|RUSUT),

where S and T are obtained as follows:

e Each s € § is a word in the elements of Y and their inverses. If we replace each y in s by
its chosen lift §, we get an element § of GG, which is in fact in H, since its projection to K
is trivial by construction. Each element of H is represented by a word on the elements of X
and their inverses, so we can choose some wy € F[X] representing 5. Then S is the following
set of relations: B

S:={sw;'|secS}CFXuY].

1

e For each y € Y and each z € X, the element gxy~" is an element of H, which can be

represented by a word w, , € F[X]. Then we define:
Ti={yoy 'w;} |z € X, ye Y} C FIXUY].

Remark A.24 If the presentations of H and K are finite, this construction gives a finite presen-
tation of G.

Remark A.25 (Split extensions) When the extension splits (that is, when G is a semi-direct
product of K by H), one usually chooses the lifts of generators of K to be their images under a
fixed section. Then the presentation obtained is somewhat simpler, since the relations in S hold

in G (that is, S = 9).

Proposition A.26 The above presentation is indeed a presentation of the extension G.

Proof. Let Gg be the group defined by the above presentation. By construction, the assignments
r—x € HC G and y — ¢ induce a well-defined morphism 7 from Gy to G. Let Hy be the
subgroup of Gy generated by X. The morphism 7 restricts to a morphism 7g: Hy — H. Since
the relations R are satisfied in Hy, we can construct an inverse to mg: it is an isomorphism.

The relations T ensure that Hy is stable by left conjugation by the y € Gy. Moreover, for all
h e H, ng(yhy=t) = n(y)n(h)m(y)~! = grg(h)g~t. Since H is normal in G, left conjugation by
7 is an automorphism of H. Since my is an isomorphism, left conjugation by y € Gy must be an
automorphism of Hy, which implies that Hy is stable by left conjugation by y~!. Finally, Hy is
stable by left conjugation by y*!, and also (clearly) by z*!, so it is normal in Gy.

As a consequence, 7 induces a morphism of extensions:

HO — GO — GO/HO

PR

H G K.

The relations R and T become trivial in Go/Hy, and S reduces to S there, so this quotient admits
the presentation (Y'|S). This implies that 7 is an isomorphism. Since we already know that 7y is
an isomorphism, the Five Lemma allows us to conclude that 7 is an isomorphism. O

Remark A.27 We can replace some of the generators y by their inverses before doing this con-
struction, so we can choose T to encode either left conjugation by y, or right conjugation by y, for
each y.

Corollary A.28 If G is a 2-nilpotent group whose abelianisation is free abelian, then G is deter-
mined (up to isomorphism) by its associated Lie ring.
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Proof. We construct a presentation of G which depends only on the structure of £(G) (and on
some choices not involving elements of G). The group G is an extension of G* = £;(G) by
I'5(G) = L2(G), to which we can apply the previous construction. Since G2 is free abelian on
some set Y, a presentation of this group is given by generators Y and relations {[y, 2] | y,z € Y'}.
Let (X|R) be a presentation of the group L£5(G). Then G admits the presentation with generators
X UY and relations R U S U T, constructed as above. We need to show that S and T can be
recovered from calculations in £(G) alone.

o Let s € 5, that is, s = [y, 2] for some y,z € Y. Then, by definition of L(G), § = [g, Z] is the
element of T's(G) = L2(G) given by the bracket of y, z € L1(G).
o Since [G,T'2(G)] = {1}, the set T consists of the relations [y, ], for x € R and y € S.

Thus the above presentation of G can be obtained from the data of £(G), as claimed. O

Remark A.29 Corollary A.28 is not true in general if the abelianisation of G is not free. For
example, the dihedral group Dg of order 8 and the quaternion group Qg are not isomorphic,
but they are 2-nilpotent groups whose Lie rings are isomorphic. Indeed, in both cases, we have
L£1G = (Z/2)? and L2G = Z/2 and the Lie structure is fully determined by saying that whenever
a and b are two distinct non-trivial elements of £, G, then [a, ] is non-trivial in L2G.

B Appendix 2: Some calculations of lower central series

B.1 Relative lower central series

In order to get actual computations, we need to recall some material from [Dar21, §3] about the
lower central series of a semi-direct product.

Definition B.1 Let G be a group, of which H is a normal subgroup. We define the relative lower
central series I'°(H) by:

{FF (H) = H,
IS (H) =[G, T'fH)).

If G is the semi-direct product of H with a group K, we write ' (H) for ' *¥(H) (which does
not cause any confusion: if H is a normal subgroup of a group G, then I'(H) = I'"™%(H), for
the semi-direct product associated to the conjugation action of G on H). It was shown in [Dar21]
that in this case:
I (Hx K)=TK(H) % I(K).

Moreover, the filtration I' (H) = HNT'.(H x K) does have the property that [ (H), FJ-K(H)} -
It (H) (for all 4,j > 1), which allows one to define an associated graded Lie ring £LX(H) (with
brackets induced by commutators, as in §1.2). Then, the Lie ring of H x K decomposes into a
semi-direct product of Lie rings:

LHxK)=LN(H) x L(K).

This is in fact a generalisation of Lemma 1.9, which is the degree-one part (one can check that
LE(H) = (H™)k).

We can devise an analogue of Lemma 2.6 in this context, which gives a criterion for the relative
lower central series to stop:

Lemma B.2 Let a group K act on a group H. Let the set Sk generate K*® and let the set Sy
generate (H*®) . Suppose that for each pair (s,t) € S% (resp. (s,t) € Sy x Sk ), we can find
representatives §,t € H (resp. 3 € H andt € K) of s and t such that § and t commute in H
(resp. in H x K ). Then I'f*(H) = '’ (H), which means that I'’ (H) stops at I'¥(H), and:

L(Hx K) = (H*) x L(K),

where the first factor is concentrated in degree one.
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Proof. On the one hand, by definition of the relative lower central series, an element of LI (H) is
a sum of brackets in £(G x K), either of two elements of L& (H), or of an element of £;(K) with
an element of £1(H). On the other hand, the relation [3,#] = 1 in H x K readily implies that
[s,t] =01in L(H x K) = LX(H) x L(K). Since Sy linearly generates L& (H) = (H*®)x and Sk
linearly generates £;(K) = K, we infer that under our hypothesis, all elements of £X(H) are
trivial, which means that I'S(H) = I['¥(H). Moreover, from the definition of the relative lower
central series I'/(H), this obviously implies that I'/(H) = '’ | (H) for all i > 2. The statement
about Lie rings is then just a reformulation of the decomposition £(H x K) = LX(H) x L(K)
taking into account these conclusions. O

B.2 Semi-direct products of abelian groups

Let a group G act on an abelian group A. Then the lower central series of A x G can be computed
using linear algebra. Indeed, we have:

IFa(A) = [AxG, IIT(A)] =[G, IF(A)].
These are commutators in A x G, given, for g € G and a € A, by:
[9.a] = g-a—a=(g—id)(a)

As a consequence, I'C | (A) is the subgroup of A generated by the (g — id)(I'C(A)) (for g € G),
which can be computed by studying the endomorphisms g — id of A.

We now study several instances of this situation. We begin by computing the lower central series
of the Klein group Z x Z (which is the fundamental group of the Klein bottle). We then generalise
this calculation to any semi-direct product of an abelian group by Z acting by —id. This can be
generalised again, to the case of an action of Z by an involution. Finally, we compute the lower
central series of A x Wy, where W is the Coxeter group of type By (or Cs), acting on the lattice A
generated by its root system.

B.2.1 The Klein group

There are two distinct automorphisms of Z (that is, £id), whence only one non-trivial action of Z
on Z. Thus the following definition makes sense:

Definition B.3 The Klein group is the semi-direct product K = Z x Z.

Let us denote by x (resp. by t) the element (1,0) (resp. (0,1)) of Z x Z. A presentation of K is
given by K = (z,t | tot~! = 271).

The lower central series of K decomposes as I',(K) = I'?(Z) x I.(Z). Thus, in order to understand
the lower central series of K, we need to understand the filtration I'Z(Z).

Proposition B.4 The lower central series of the Klein group is I'y(Z x Z) = (2°71Z) x {1} for
i > 2. In other words, I'*(Z) = 2i=Z. In particular, Z x 7 is residually nilpotent.

K2

Proof. This follows from the formula [z’ ] = % (tz=2t~1) = 2%, by induction on i. O

Corollary B.5 The (graded) Lie ring of the Klein group identifies with (Z/2)[X] x Z, where the
polynomial ring (Z/2)[X] is seen as an abelian Lie ring (where X* is of degree i), and the generator

T of Z (of degree 1) acts via [X*,T] = X1,
Proof. From Proposition B.4, we get a decomposition L(K) = £(2*7'Z) x L(Z). Since Z is abelian,

the two factors are abelian Lie rings. The result follows, by qaying X' the class of 22 and T the
class of t. The formula for brackets comes from [z%’,¢] = 22" O
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B.2.2 Generalised Klein groups

Let A be any abelian group, and let Z act on A via the powers of —id4. The corresponding
semi-direct product K4 = A X Z is a generalisation of the Klein group K = Kz. We can generalise
the above results to this context:

Proposition B.6 The lower central series of K 4 is given by I;(AxZ) = (2171 A) x {1} fori > 2
In other words, for all i > 2, I'*(A) = 2°=YA. In particular, for any free abelian group A, K4 is
restdually nilpotent.

Proof. Let t denote the generator of Z. For all a in A, we have [a,t] =a—t-a = 2a in A x Z.
Hence [27A,t] = 271 A, from which the calculation of the lower central series follows. Then K4 is
residually nilpotent if and only if the intersection of the 27 A is trivial, which is true for instance
when A is finitely generated or when A is free. O

Corollary B.7 Let us consider the abelian Lie algebra L(2*71A) = @271 A/2'A (where the sum
is taken over i > 1). The (graded) Lie ring of K s identifies with L(2*A) x Z, where the generator
T of Z acts via the degree-one map induced by a — 2a.

Proof. From Proposition B.6, we get a decomposition £(K) = L£(2*71A) x £L(Z). Since Z and A
are abelian, the two factors are abelian Lie rings. The result follows, since brackets with T" come
from commutators with ¢, given by [a,t] = 2a in A x Z. O

Since t2 acts trivially on A4, it is a central element of K4 (in fact, one easily sees that it generates
the center of K4 if A is not trivial). Thus we can consider A x (Z/2) (where Z/2 acts on A via
—id ) as a quotient of K 4, which behaves much in the same way:

Corollary B.8 Consider the group A x (Z/2), where Z/2 acts on the abelian group A via —ida.
We have [j(A x (Z)2)) = (2171 A) x {1} for all i > 2. In particular, for any finitely generated
abelian group A, A x (Z/2) is residually nilpotent. Moreover, the (graded) Lie ring of this group
identifies with £(2* 71 A) % (Z/2), where the generator T of Z./2 acts via the degree-one map induced
by a — 2a.

Finally, let us spell out the particular case where A = Z™ is free abelian on some basis x1, ..., Z,.
We then denote K4 by K, for short.

Corollary B.9 The (graded) Lie ring of K,, identifies with (Z/2)"[X] x Z, where the polynomial
ring (Z/2)"[X] is seen as an abelian Lie ring (where X* is of degree i), and the generator T of Z
(of degree 1) acts via [v- X', T]| =v- XL, forv e (Z/2)".

Proof. This is just a matter of identifying £(2*~1Z") with (Z/2)"[X], by calling v - X* the class
of the sum of the 2~ 'z, such that v = 1. O

B.2.3 A further generalisation

Let A be an abelian group, and let Z act on A via the powers of some involution 7. Let us denote
by K, the corresponding semi-direct product A x Z. We have:

(r=1D)+2(r-1)=7*-1=0,
which means that 7 — 1 acts via multiplication by —2 on V := Im(7 — 1).

Proposition B.10 The lower central series of K, is given by I;(AxZ) = (2172V) x {1} fori > 2
In other words, for all i > 2, I'*(A) = 272V In particular, for any free abelian group A, K, is
restdually nilpotent.

Proof. For all a € A, we have [a,t] =a—7(a) = (1— )( ). This implies that I'Z(A) = Im(7—1) =
V. Then for all v in V| we have [v,t] = v —7(v) = 2v in A X Z, and the rest of the proof is similar
to the proof of Proposition B.6. O



Corollary B.7 generalises immediately to this context:

Corollary B.11 The (graded) Lie ring of K, identifies with (A/V @ V/2V @2V/4V & ---) 1 Z,
where AJV and Z are in degree 1, 2072V /21=1V s in degree i and the generator T of Z acts via
the degree-one map induced by 1 — 7 (which coincides with v — 2v on V).

The reader can also easily write a generalisation of Corollary B.8 to this context, by factoring the
action of Z through Z/2.

B.2.4 More actions on abelian groups

Let us consider the group (0,7 | 02 = 2 = (04)* = 1), which is the Coxeter group of type Ba,
also denoted by Wo = (Z/2)1 S5 in the rest of the paper. It acts on R? in the usual way: 7 acts by
(; ¥y and o by (} }). This action preserves the lattice A :=Z-(0,1) ®Z- (3, 3) (which is generated
by roots). It also preserves the lattice V = Z2, which is of index 2 in A.

Proposition B.12 The filtration I''V2(A) on A is given by:
ADVDO2AD2VD4AD ---.

In particular, A x Wy is residually nilpotent, but not nilpotent.

Proof. One can easily write down explicitly the eight matrices for the actions of elements of Wy
(which are the invertible monomial matrices in GLy(Z)). Recall that for every g € Wo, g — id is
the commutator by g in A x Ws. It is then easy to check that the g —id send A to V' (resp. V' to
2A), and that the (g —id)(A) (resp. the (g —id)(V)) generate V' (resp. 2A), whence the result. O

Remark B.13 One can look at the proof in a geometric way, by seeing each element g - v — v as
the difference between two vertices of a square centered at 0.

Remark B.14 One can compute completely the associated Lie ring, which is a semi-direct product
of the abelian Lie ring (Z/2)[X] by the mod 2 Heisenberg Lie ring £(W2) = n3(Z/2).

Remark B.15 Let us use the notations a := (0,1), b := (1,0) and ¢ := (3,3). Then A can be
described abstractly as the abelian group generated by a, b and ¢, modulo the relation a + b = 2c.
Moreover, the action of o fixes ¢ and exchanges a and b, and the action of v is via a — a, b +— —b
and ¢ — ¢ — b. In particular, since b = 2¢ —a and ¢ — b = a — ¢, in the basis (a,c) of A, o acts by
(*21 (1)) and vy by (}1 jl). Notice that in this basis, V is just the subgroup of elements whose second
coordinate is even.

In the course of the proof of Proposition 6.68, we encounter a slight variation on the above action
of Wy on A = Z2. Namely, we can construct an action of K = Dicig X (Z/2) on A, by making
Dicig = (0,7) act through its quotient Wy (which is the quotient by ¢?), and making Z/2 = (7)
act by —id. Notice that there is already an element in W, acting by —id, namely the central
element (0y)? of Wo, so this action is in fact through the quotient K — W5 sending respectively
o, v and T to o, v and (oy)2. In particular, this implies that we have:

[F(A) = I (4).

B.3 Free products
B.3.1 Two examples
Consider the simplest free product of two groups, which is the infinite dihedral group Z/2+2Z/2 =

(w,y | 22 = y* = 1). We can determine its lower central series from its description as a semi-direct
product:
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Proposition B.16 There is an isomorphism:
Z)2x7)2 = Z x(Z)2).

As a consequence, this group is residually nilpotent, and its Lie ring is (Z/2)[X] x (Z/2), where
both factors are abelian Lie rings, and the generator T of Z/2 acts by [X*,T] = X*1.

Proof. We know a presentation of each these groups, namely Z/2 % Z/2 = (z,y | %> = y* = 1) and
Zx (Z)2) = {(a,t | tat™> = a=1, #? = 1). It is then easy to check that the assignments x — ¢,
y +— ta and t — x, a — zy define morphisms inverse to each other. The rest is an application of
Corollary B.8 with A = Z. O

Consider now the free product Z * (Z/2) = (x,y | y*> = 1). We have a similar decomposition into
a semi-direct product:

Proposition B.17 There is an isomorphism:
Zx(Z/2) =Fqx(Z]2),

where the action of the generator t of Z/2 is given by exchanging the two elements a and b of a
basis of the free group Fa.

Proof. Again, we know a presentation of each these groups, namely Z* (Z/2) = (x,y | y*> = 1) and
Fy x (Z/2) = (a,b,t | tat™! = b, tht~1 = a, t> = 1). It is then easy to check that the assignments
x+—thy,y — tand t — y, a — xy, b — yx define morphisms inverse to each other. One may
alternatively observe that the Tietze transformation removing the generator a turns the second
presentation into the first. O

Remark B.18 The group Z x (Z/2) is isomorphic to wBy (or vBjy), and the above isomorphism
can be identified with wBs =2 wPy x &9, together with wPy = Fo (with basis (x12, x21))-

The lower central series of Z * (Z/2) is much more difficult to compute than the one of Z/2 % Z/2
above. The reader can find a presentation of the associated Lie ring in [Lab77], where the methods
used are somewhat different from ours. Our methods could be adapted to recover this result,
together with the residual nilpotence of the group, but we will not do so here. We only give a
proof of the following:

Proposition B.19 The group Z x (Z/2) is residually nilpotent, but not nilpotent. Its Lie ring has
only 2-torsion elements, except in degree one.

Proof. Note that the group Z * (Z/2) surjects onto Z/2 x Z/2, whose lower central series does
not stop, by Proposition B.16. Notice also that the statement about torsion has already been
proved in Example 2.9. As a consequence, we only need to prove that Z * (Z/2) is residually
nilpotent, which is the difficult part of the statement. We can prove it using some kind of Magnus
expansion. Namely, let us consider the associative algebra of non-commutative formal power series
A:=Fo(X,Y)/(Y? =1). We get a morphism ® from Z * (Z/2) to A* by sending z to 1 + X and
y to 1 +Y. It is injective, by the usual argument: if z*y ... z*y<lx®+! is a non-trivial reduced
expression of some non-trivial element g € Z*(Z/2) (with e; = +1, a; € Z, and a1 and a;41 possibly
trivial), then, by writing a; = 2% (2¢; + 1), using (1 +X)2k =1+X2" and 1+T)*=14aT+---,
we see that the coefficient of the monomial X2 Y X2V .. Y X2"*! in ®(g) is not trivial, hence
P(g) # 1.

Now let us denote by (X,Y’) the ideal generated by X and Y in A, and by A; the subgroup
1+ (X,Y)" of A% (for k > 1). It is easy to see that [A], AS] € A, forall k > 1. Asa
consequence, for all k& > 1, we have I'(A]) C A. Since the intersection of the 1 + (X,Y)" is
obviously trivial, A{* is residually nilpotent, whence also Z * (Z/2), which is isomorphic to one of
its subgroups. O
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B.3.2 An Artin group
Consider the Artin group of type By (which is also B; o — see Lemma 3.15), that is:
G := (0,2 | (02)? = (z0)?).
Let 0 := ox. Then (0x)? = (z0)? is equivalent to 62 = 0=§%0, so that:
G = (0,6 | 6% = 00?).

The element 62 commutes with the generators § and o, hence it is central in G. Since G?P is free
on the classes of § and o (as is obvious from the presentation), §2 is of infinite order. Moreover,
the above relation clearly becomes trivial when 62 is killed, so that:

G/6* = (0,6 |06%>=1) =7 x*(Z/2).
We thus have a central extension:

Z— G —> Z=x(Z/2).
Proposition B.20 The group G = (o, | (0x)? = (z0)?) is residually nilpotent (but not nilpotent).

Proof. We have observed above that the central subgroup (42) injects into G*’. Thus, we can
deduce the (strict) residual nilpotence of G from the fact that Z % (Z/2) is (strictly) residually
nilpotent (see Proposition B.19) by applying Corollary 1.3. O

The decomposition of G into a central extension can also be used to describe its Lie ring. Namely,
it can be obtained from the Lie ring of Z x (Z/2) described in [Lab77]; see §B.3.1.

Proposition B.21 The Lie ring of G = (0, | (0x)? = (z0)?) is a central extension of L(Z*(Z/2))
by Z, concentrated in degree one. Precisely, 25T is central in L(G), and L(G)/(26T) = L(Zx(Z]2)).

Proof. We have seen that (62) injects into G®P, which means that (52) N I%(G) = {1}. As a
consequence, the projections m: I'y(G) — I.(G/8?) have trivial kernels for k > 2, which means that
they are isomorphisms. Thus, the canonical morphism from £(G) to £(G/§?) is an isomorphism
in degree at least 2. In degree one, it identifies with the projection of G*P = 72 onto (G/§?)*P =
Z x (Z/2), whose kernel is generated by 62 = 20. Moreover, since 62 is central in G, its class in
L(G) must be central, whence our result. O

B.4 Wreath products

This section is devoted to the study of the lower central series of wreath products. Recall that if
K is a group, X a finite set and ¢: K — &x a morphism, then we can form the wreath product of
K with any group G:

GIK =G xK,

where K acts through ¢: K — Gx and the action of &x on G¥X by permuting the factors. The
lower central series G ! K decomposes as ' (GX) x I'.(K). But I'*(G¥) = e (G¥) depends
only on the image of K in &x. As a consequence, in order to study the lower central series of
G U K when that of K is known, we can restrict to the case where K is a subgroup of Sx (and ¢
is the corresponding inclusion).

Lemma 1.9 allows us to compute abelianisations of wreath products:

Lemma B.22 Notations being as above, (G 1 K)*® = (G*P)X/K x K>, In particular, for any
integer n > 2, we have (G16,)*® = G x (Z/2).
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Proof. 1t is a direct consequence of Lemma 1.9:
(GZK)ab — ((GX)ab)K % Kab — ((Gab)X)K % Kab — (Gab)X/K % Kab.

In particular, when K = &,, with n > 2, then K?P = Z/2 and K acts transitively on X = {1,...,n},
whence the result. O

Corollary B.23 For any partition A = (n1,...,n;) of n, if ' denotes the number of indices i <l
such that n; > 2, we have (G1&,)*P = (G*P)! x (Z/2)".

Proof. G1&) decomposes as the direct product of the G1S,,,, and (G1&,,,)*" identifies with G*P
when n; = 1, and with G* x (Z/2) if n; > 2. O

B.4.1 Partitioned wreath product

We first consider the case where K = &, for some partition A = (nq,...,n;) of an integer n, which
is the case used throughout the paper. We note that:

l
RIS ] KeREcH

i=1

As a consequence, we only need to consider the case where K = &,,. We first show that there is a
stable behaviour, occurring as soon as n > 3. Then we study the case n = 2 (the case n = 1 being
trivial), which we solve for G abelian.

Recall that the usual generators 7; of &,, are conjugate to each other, hence G2P 2 7,/2 is generated
by their common class 7, and I, = Iy, for &,,.

Proposition B.24 Let G be a group. For anyn > 3, then the Tﬂjl normally generate ['»(G1S,,),
and (G16,)* = G* x 7Z/2. Moreover, the lower central series of G1&,, stops at I's.

Proof. Let N be the subgroup of G ! G,, normally generated by the Tﬂj_l. These are in I5(6,,),
whence also in I»(G 1 &,,), hence the latter contains N. In order to show the converse inclusion,
we need to show that (G &,,)/N is abelian. For any g € G, let us denote by g the class of
(9,1,...,1) € G™ modulo N. We now show that the g, together with 7, generate (G16&,,)/N, and
we use a disjoint support argument to show that they commute with one another.

First, let us remark that § commutes with 7. This comes from the fact that 7o acts trivially on
(g,1,...,1), thus commutes with it in G &,,. From this, we deduce that g is also the class of
o(g,1,..., )07t = (1,...,1,9,1,...,1) for any o € &,, (whose class modulo N is a power of 7). In
particular, for all g,h € G, (g,1,...,1) commutes with (1, h, ..., 1), hence § commutes with h.

Now, every (g1,...,9n) € G™ is the product of the (1,...,1,g;,1,...,1), so that all the elements
(1,...,1,9,1,...,1) (for all g € G and any choice of position), together with the 7;, generate G1S,,.

This implies that their classes g, together with 7, generate (G!&,,)/N. Since these generators
commute with one another, this ends the proof that N = I(G 1 &,,).

The rest of the statement is a direct application of Lemmas B.22 and B.2. O

Corollary B.25 Let G be a group, n > 3 be an integer, and A = (ny, ..., n;) be a partition of n with
n; = 3 for all i. Then the TaTﬁ_l for « and B in the same block of \ normally generate I'5(G16)),

and (G16,)P = (G* x Z/2)!. Moreover, the lower central series of G 1 &y stops at Is.

1
Proof. Apply Proposition B.24 to each factor of the decomposition G1 &y = [[ G16,,,. O
i=1

Since G161 = G, the only case left in our study of G1 & is the case of G &2, which can be quite
complicated. We treat the case where G is an abelian group, which we denote by A.
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Proposition B.26 Let us denote by §A the subgroup {(a,—a) | a € A} of A%. For alli > 2, we
have I'j(A1&3) = 2072(5A). Moreover, the Lie algebra decomposes as:

LIA1G,) = (AD AJ2AD24/4A G ) % (Z/2),

where A and 7,/2 are in degree 1 and each factor of the form 2=2A /271 A is in degree i. The Lie
ring A® AJ/2A® --- is abelian, and the generator T of Z/2 acts on it via the degree-one map:

a—a in degree 1,

a— 2a in degree at least 2.
Proof. This is a straightforward application of Proposition B.10 and Corollary B.11 (adapted to
an action of Gy = Z/2 instead of Z). Namely, V = §A is the subspace of A2 on which &, acts by
—id. Moreover, A?/V = A (via (a,0) <= a), and the map induced by 1 — 7 identifies with the one
described in our statement. O

Corollary B.27 Let G be a group, and X\ be a partition with at least one block of size 2. Suppose
that 2:G* # {0} for every integer i. Then the lower central series of G &y does not stop.

Proof. The group G*P 1 &, is a quotient of G &y, whose lower central series does not stop by
Proposition B.26. Thus, our statement follows from Lemma 1.1. [

B.4.2 General wreath products

Let us investigate the lower central series of more general wreath products. The following results
are not used elsewhere in the paper, but they appear as yet another example of an application of
our methods.

We go back to the notations of the beginning of the section: the wreath product G ! K is taken
with respect to an action of K on a finite set X. In the proof of Lemma B.22, one can see that
the quotient map GX — (G*P)X/K is given explicitly by:

(gz)xEX = (Z e

zeC >C€X/K

Suppose then that K acts on X without fixed points. Then every pair of elements in (G*P)X/K
can be lifted to a pair of commuting elements in GX. Indeed, let us choose two distinct elements
zc,yc € C in each orbit C € X/K. Then (go)cex/x and (he)cex/x are, respectively, the class
of (ug) and (v,) where uy, = go (resp. vy, = h¢) and all the other u, (resp. v,) are equal to 1.
Since (u;) and (v,) have disjoint support, they commute.

Under the right (stronger) hypothesis, we can elaborate on this disjoint support argument to get:

Proposition B.28 Suppose that K acts on X without fized points. Suppose moreover that we can
find a set S generating K such that for all s € S, each K-orbit of X has a fixed point under the
action of s. Then for any group G, I'X(GX) stops at I'f(GX), and:

L(GIK) = (G*)XF % L(K),
where the first factor is concentrated in degree one.

The hypothesis is a stability hypothesis: we suppose that each orbit is large enough, but also large
enough with respect to the supports of the generators of K. This is satisfied for instance when K
is generated by transpositions (which means exactly that K is conjugate to &, for some partition
A of n), and all its orbits are of size at least 3 (that is, A has no block of size 1 or 2). Thus, apart
from the statements about normal generation, we can recover Proposition B.24 and Corollary B.25
as corollaries of the above proposition.
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Proof of Proposition B.28. Recall that £IX(GX) = ((GX)*?) ¢ = (G**)X/K | 50 that this result can
be obtained as a direct application of Lemma B.2. In fact, we have already explained (just before
our proposition) that elements of (Gab)X/ K have commuting representatives when the action of K
on X is without fixed points. Now, our second hypothesis will allow us to construct, for any s € S,
a representative commuting with s of any element of (G#*)*/K. We can then apply Lemma B.2
by taking as Sk the image of S in K", and as Sy any generating family of H = GX.

Let us fix s € 5, and let us choose one fixed point z¢ of C' for any K-orbit C'in X. Let (g¢o)cex/k
be an element of (G*?)X/X (where the go are elements of G). Define (u,) € GX by u,, = gc and
u, = 1 when z is not among the z¢. Then (u,) is a lift of () to GX, and s acts trivially on it,
which means exactly that s commutes with it in GX x K. O

Decomposition into orbits. We can enlarge the domain of application of Proposition B.28 by
considering the decomposition of X into K-orbits. For instance, if K does have fixed points in X,
then if T C X is the set of such fixed points, we have G1 K = GT x (G K), where the second
wreath product is with respect to the action of K on X — T, which is without fixed points.

In general, when a group K acts on a group H and H decomposes as a direct product Hy x Hs of
K-groups (that is, a direct product of groups such that the action of K stabilises the factors), then
it is clear (from the definition) that I’ (H) = I'(Hy) x I'(Hy) for all i > 1. This implies that
LK (H) = L5 (Hy) x L5 (Hy), and the Lie algebra £(H x K) decomposes as (L5 (Hy) x L% (Hz)) »
L(K), where the action of £L(K) on the product is the diagonal one.

In the case of wreath products, we have a decomposition into a product of K-groups:

¢¥= [ ¢°.

Cex/K

As a consequence, LK (GX) identifies with the product of the £X(G), and this decomposition is
preserved by the action of £(K). Note further that ' (G®) does not depend on the whole of K,
but only on its image K¢ in &¢. In particular, if we want to apply Proposition B.28 to show that
the relative lower central series of G stops, we only need to look for generators of K¢, which may
be easier to study than generators of K.

Remark B.29 The above decomposition extends to a product decomposition of G?! K when K
identifies with the direct product of its images K¢ in the &¢; then G ! K is the product of the
G ! K¢. This holds in particular for K = &, for which we recover the decomposition of G &) as
the product of the G1&,,, used above.
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