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Configuration spaces

Definition
Let Conf,(M) = {(x1,...,Xxn)|xi € M, x; # x; for i # j}/Sn.
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Configuration spaces

Definition
Let Conf,(M) = {(x1,...,Xxn)|xi € M, x; # x; for i # j}/Sn.
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Stabilization maps for open manifolds

There is a map t : Conf,(M) — Conf,1(M).
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Homological stability

Theorem (McDuff)

For M connected, non-compact, and n > i, the map
t : Hi(Conf,(M)) — H;(Conf,+1(M)) is an isomorphism.
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Homological stability (example)

0 ifn=0
For M a non-compact surface, Hy(Conf,(M)) = ¢ H1(M) ifn=1
H(M)®Z ifn>2
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Failure of homological stability (example)

0 if n<2
Z/(2n—2) ifn>2

(2n-2)

Hy(Conf o(S2)) = {
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Stable periodicity

Theorem (Cantero—Palmer, Nagpal, Kupers—M.)
For M connected and n > i, H;(Conf,(M);F,) = H;(Conf,ip(M);Fp)
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Stable periodicity

Theorem (Cantero—Palmer, Nagpal, Kupers—M.)
For M connected and n > i, H;(Conf,(M);F,) = H;(Conf,ip(M);Fp)

F; ifn=1mod3

0  otherwise.

For n > 2, H;(Conf,(5%);F3) = {
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What are the maps inducing stable periodicity?

Goal: Find a map
Hi(Conf,(M); Fp) ® Ho(Conf,(M);Fp) — Hi(Conf i p(M); Fp) inducing
stable periodicity.
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Stability in high dimensions

Let d = dim M. Then H;(Conf,(M)) =0 for i > (d — 1)n+ 1.

zero /
E

xtremal stability

Homological stability/stable periodicity

WV WV
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Extremal stability

Theorem (Knudsen—M.—Tosteson)

Let d =dim M. Let v, = (d — 1)n+ 1. There are polynomials pj?dd and
psve” of degree < dimg Hy—1(M; Q) such that, for n > i,
p"(n) if nis even

dimg H,,,—i(Conf,(M); Q) =
img Hy, ( on n( ) @) podd(n) if n is odd.
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Extremal stability

Theorem (Knudsen—M.-Tosteson)

Let d =dim M. Let v, = (d — 1)n+ 1. There are polynomials p"dd nd
psve” of degree < dimg Hy—1(M; Q) such that, for n > i,

. p"(n) if nis even
d H,,—i(Conf,(M); Q) =
img Hy,—i( n(M); Q) pOdd(n) if n is odd.

Example

n+n?+16

. if nis even
dlm@ Hn+1(confn(z2); Q) = { n3+}79—9n—9
16

if nis odd.
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What are the maps extremal stability?

Goal: Find a map
H;(Conf,(M); Q) ® Hag—2(Confa(M); Q) — Hit2d—2(Confria(M); Q)
inducing stable periodicity.
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Algebraic reformation of classical stability

Let Wy, W, ... be a sequence of finitely generated abelian groups.

@ The data of maps W, — W),41 is the same as the data of a
Z[x]-module structure on the graded module W = @, W,. |x| = 1.

@ The maps W, — W11 are eventually isomorphisms if and only if W
is a finitely generated Z[x]-module.
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Algebraic reformation of classical stability

Let Wy, W, ... be a sequence of finitely generated abelian groups.

@ The data of maps W, — W),41 is the same as the data of a
Z[x]-module structure on the graded module W = @, W,. |x| = 1.

@ The maps W, — W11 are eventually isomorphisms if and only if W
is a finitely generated Z[x]-module.

Take W, = H,(Conf,(M)) for M non-compact.
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Algebraic reformation of perodicity

Let Wp, W, ... be a sequence of finitely generated abelian groups.

@ The data of maps W, — W, . is the same as the data of a
Z[x]-module structure on the graded module W = @, W,. |x| = k.

@ The maps W, — W, are eventually isomorphisms if and only if W
is a finitely generated Z[x]-module.
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Algebraic reformation of perodicity

Let Wp, W, ... be a sequence of finitely generated abelian groups.

@ The data of maps W, — W, . is the same as the data of a
Z[x]-module structure on the graded module W = @, W,. |x| = k.

@ The maps W, — W, are eventually isomorphisms if and only if W
is a finitely generated Z[x]-module.

Take W, = H;(Conf,(M);F,) for M compact and p = k.

Jeremy Miller (Purdue University)



Reformulation of polynomial growth

Let Wp, W, ... be a sequence of finitely generated abelian groups and
W=, W, Let V=2" =< xq,...,xm > with |x;| =1 for all i.
@ The data of maps V @ W,, — W, 11 (satisfying a commutativity
condition) is the same data as a Z[xi, . .., x;]-module structure on M.

e If W is a finitely generated Z[xq, ..., xm]-module, then for each field
I, there is a polynomial p of degree m — 1 such that for large n,
dimp W, @ F = p(n).
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Reformulation of quasi-polynomial growth

Let Wy, W, ... be a sequence of finitely generated abelian groups and
W=, W, Let V=72" =< xq,...,Xxm > with |x;| = k for all /.
@ The data of maps V @ W,, — W, (satisfying a commutativity

condition) is the same data as a Z[xi, . . ., Xm|-module structure on M.
o If W is a finitely generated Z[xi, ..., xm]-module, then for each field
I, then there are polynomials p1, ..., px of degree m — 1 such that

for large n, dimp Wipiq ® F = pg(n).
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Reformulation of quasi-polynomial growth

Let Wy, W, ... be a sequence of finitely generated abelian groups and
W=, W, Let V=72" =< xq,...,Xxm > with |x;| = k for all /.
@ The data of maps V @ W,, — W, (satisfying a commutativity

condition) is the same data as a Z[xi, . . ., Xm|-module structure on M.
o If W is a finitely generated Z[xi, ..., xm]-module, then for each field
I, then there are polynomials p1, ..., px of degree m — 1 such that

for large n, dimp Wipiq ® F = pg(n).

Take W, = H™(d=D~(Conf,(M); Q) for dim W = d, k =2,
m = dimg Hy—1(M; Q).
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Strategy overview

@ Try to build a map C.(Conf(M)) ® C.(Conf(M)) — C.(Conf(M)).
@ Using factorization homology, just need to build a map
C.(Conf(R?)) ® C,(Conf(RY)) — C.(Conf(RY)).

@ Use operadic cells to find the obstruction to building such a map.
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Algebra over the little disks operad

Definition

Let E4(n) be the space of n d-dimensional disks in an n-dimensional disk.

Definition

An Eg-algebra is a space A and maps E4(n) x A" — A such that ...
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Examples of E,-algebras

Conf(RY) is an Ey-algebra.

OO

N, Q9X, Conf(R?) x Conf(RY) are also Ey-algebras.
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Factorization homology

Input of factorization homology: An Eg-algebra A and a d-manifold M.
Output of factorization homology: A space [,, A.

o [, Conf(R9) ~ Conf(M).

o [iyN~Sym(M).

o [, QX ~ Map*(M,x?X)

o [, Conf(R9) x Conf(R9) ~ Conf(M) x Conf(M).

Warning: | am sporadically assuming the manifolds are parallelizable.
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Question: What is the data of a based map S! x S' — X?
Answer: Two maps f,g : S — X and a choice of null homotopy of [f, g].

St x St = S1v St with a cell attached along the commutator.

N\
V4

N\
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Commutator for Eg-algebras

E4(2) ~ S91. Plugging in the fundamental class into E5(2) x Ax A — A
gives a Lie bracket

) ® Hj(A) = Hitjta-1(A

SO0
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Commutator for Eg-algebras

E4(2) ~ S91. Plugging in the fundamental class into E5(2) x Ax A — A
gives a Lie bracket

) ® Hj(A) = Hitjta-1(A

SO0

Class of a point gives a product e : H;(A) ® H;(A) = Hiyj(A).

Jeremy Miller (Purdue University)



Classical cell attachments

Let X be a space. Let f: SN=1 — X be a map. X with a cell attached
along f is the pushout:

sn-1 _f X

! l

DN — Xuf DN
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E -cell attachments

Let E4 denote the free Egy-algebra functor. Let A be an Eg-algebra. Let
f: SN=1 A be a map. X with an Ey-cell attached along f is the
pushout (in the category of E4-algebras):

EdSNfl —f> A

l 5

E4DN —— AUL DN
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Free E,-algebras

For Y a space, E4Y is the configuration space of disks with labels in Y.

O

®)

o E4{pt} ~ Conf(RY).
o Ey{red, blue} is homotopy equivalent to the configuration of red and
blue points in RY.
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Examples of E,-cell structures

o E4{pt} ~ Conf(RY) is obtained from the trivial E4-algebra by
attaching one O-cell.

o Ey{red, blue} is obtained from the trivial E4-algebra by attaching two
0-cells.

o Conf(RY) x Conf(RY) ~ Ey{red} x E4{blue} is equivalent to
Eq{red, blue} with a cell attached along [red, blue].

Will think of red € Ho(Conf1(R9)) and blue € Ho(Confy(RY)).
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Universal mapping property of Ej-cell attachments

o Let f:SN"1 5 A A map AUE" DN — B is the data of a map of
E4-algebras A — B and a null homotopy (in spaces) of the map
SN-1 - A B.

e A map f : Conf(RY) x Conf(RY) — A is a choice of f(red) € A and
f(blue) € A and a choice of null homotopy of [f(red), f(blue)].

red € Ho(Confy(RY)), blue € Ho(Confi(RY)).

Warning: | will be cavalier about spaces vs chain complexes vs homology.
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Applying factorization homology

@ A choice of f(red) € Conf(R9) and f(blue) € Conf(R?) and a choice
of null homotopy of [f(red), f(blue)] gives a map

f : Conf(R?) x Conf(R?) — Conf(R?).

o [, Conf(R9) ~ Conf(M).
o A choice of f(red) € Conf(RY) and f(blue) € Conf(R?) and a choice
of null homotopy of [f(red), f(blue)] gives a map

f : Conf(M) x Conf(M) — Conf(M).
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Constructing the periodic stability map

o Let teal be the generator of Hy(Confy(R9)).
[tealP, teal] = p(teal)P~![teal, teal] = 0 € Hy_1(Conf, 1 (R?); Fp).
o Letting f(red) = tealP and f(blue) = teal gives a map:

f : Hi(Conf,(M);Fp) ® Hj(Confn(M); Fp)

— Hij(Confppym(M); Fp).

@ This restricts to a map

Ho(Conf1(M); Fp) ® H;j(Confm(M); Fp) — Hj(Conf i p(M); Fp).
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Picture of periodict stability map

Ho(Conf1(M); Fp) ® H;(Confp(M); Fp) — Hj(Confpyp(M); Fp).
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Stable periodicity

Theorem (Cantero—Palmer, Nagpal, Kupers—M.)
For M connected and n > i, H;(Conf,(M);F,) = H;(Conf,,(M);Fp)
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Constructing the extremal stability map

o [[teal, teal], teal] = 0.

o Letting f(red) = [teal, teal] € Hy_1(Conf1(IR?)) and f(blue) = teal
gives a map:

f : Hi(Conf,(M)) ® H;j(Confn(M))

— Hii(d-1)n+j(Confanim(M)).

@ This restricts to a map

Hq-1(Conf1(M)) ® H;(Conf,(M)) = Hjt2q4—2(Confpio(M)).
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Picture of extremal stability map

del(confl(M)) & Hj(Confm(M)) — I-IJ-Jrgd,g(Conferg(M)).
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Theorem (Knudsen—M.—Tosteson)

Let d = dim M. Let v, = (d — 1)n+ 1. There are polynomials p?? and
psve” of degree < dimg Hy—1(M; Q) such that, for n>> i,
dimg H,,—i(Conf,(M); Q) = {

p"(n) if nis even
p°@(n) ifn is odd.
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The end
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