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Configuration spaces

Definition

Let Confn(M) = {(x1, . . . , xn)|xi ∈ M, xi 6= xj for i 6= j}/Sn.
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Stabilization maps for open manifolds

There is a map t : Confn(M)→ Confn+1(M).
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Homological stability

Theorem (McDuff)

For M connected, non-compact, and n� i , the map
t : Hi (Confn(M))→ Hi (Confn+1(M)) is an isomorphism.
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Homological stability (example)

For M a non-compact surface, H1(Confn(M)) =


0 if n = 0

H1(M) if n = 1

H1(M)⊕ Z if n ≥ 2
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Failure of homological stability (example)

H1(Confn(S2)) =

{
0 if n ≤ 2

Z/(2n − 2) if n ≥ 2
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Stable periodicity

Theorem (Cantero–Palmer, Nagpal, Kupers–M.)

For M connected and n� i , Hi (Confn(M);Fp) ∼= Hi (Confn+p(M);Fp)

Example

For n ≥ 2, Hi (Confn(S2);F3) =

{
F3 if n = 1 mod 3

0 otherwise.
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What are the maps inducing stable periodicity?

Goal: Find a map
Hi (Confn(M);Fp)⊗ H0(Confp(M);Fp)→ Hi (Confn+p(M);Fp) inducing
stable periodicity.
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Stability in high dimensions

Let d = dimM. Then Hi (Confn(M)) = 0 for i > (d − 1)n + 1.
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Extremal stability

Theorem (Knudsen–M.–Tosteson)

Let d = dimM. Let νn = (d − 1)n + 1. There are polynomials poddi and
peveni of degree ≤ dimQHd−1(M;Q) such that, for n� i ,

dimQHνn−i (Confn(M);Q) =

{
peven(n) if n is even

podd(n) if n is odd.

Example

dimQHn+1(Confn(Σ2);Q) =

{
n3+n2+16

16 if n is even
n3+n2−9n−9

16 if n is odd.

Jeremy Miller (Purdue University) 21/2/2022 10 / 34



Extremal stability

Theorem (Knudsen–M.–Tosteson)

Let d = dimM. Let νn = (d − 1)n + 1. There are polynomials poddi and
peveni of degree ≤ dimQHd−1(M;Q) such that, for n� i ,

dimQHνn−i (Confn(M);Q) =

{
peven(n) if n is even

podd(n) if n is odd.

Example

dimQHn+1(Confn(Σ2);Q) =

{
n3+n2+16

16 if n is even
n3+n2−9n−9

16 if n is odd.

Jeremy Miller (Purdue University) 21/2/2022 10 / 34



What are the maps extremal stability?

Goal: Find a map
Hi (Confn(M);Q)⊗ H2d−2(Conf2(M);Q)→ Hi+2d−2(Confn+2(M);Q)
inducing stable periodicity.
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Algebraic reformation of classical stability

Let W0,W1, . . . be a sequence of finitely generated abelian groups.

The data of maps Wn →Wn+1 is the same as the data of a
Z[x ]-module structure on the graded module W =

⊕
n Wn. |x | = 1.

The maps Wn →Wn+1 are eventually isomorphisms if and only if W
is a finitely generated Z[x ]-module.

Example

Take Wn = Hi (Confn(M)) for M non-compact.
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Algebraic reformation of perodicity

Let W0,W1, . . . be a sequence of finitely generated abelian groups.

The data of maps Wn →Wn+k is the same as the data of a
Z[x ]-module structure on the graded module W =

⊕
n Wn. |x | = k .

The maps Wn →Wn+k are eventually isomorphisms if and only if W
is a finitely generated Z[x ]-module.

Example

Take Wn = Hi (Confn(M);Fp) for M compact and p = k .
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Reformulation of polynomial growth

Let W0,W1, . . . be a sequence of finitely generated abelian groups and
W =

⊕
n Wn. Let V = Zm =< x1, . . . , xm > with |xi | = 1 for all i .

The data of maps V ⊗Wn →Wn+1 (satisfying a commutativity
condition) is the same data as a Z[x1, . . . , xm]-module structure on M.

If W is a finitely generated Z[x1, . . . , xm]-module, then for each field
F, there is a polynomial p of degree m − 1 such that for large n,
dimFWn ⊗ F = p(n).
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Reformulation of quasi-polynomial growth

Let W0,W1, . . . be a sequence of finitely generated abelian groups and
W =

⊕
n Wn. Let V = Zm =< x1, . . . , xm > with |xi | = k for all i .

The data of maps V ⊗Wn →Wn+k (satisfying a commutativity
condition) is the same data as a Z[x1, . . . , xm]-module structure on M.

If W is a finitely generated Z[x1, . . . , xm]-module, then for each field
F, then there are polynomials p1, . . . , pk of degree m − 1 such that
for large n, dimFWkn+q ⊗ F = pq(n).

Example

Take Wn = Hn(d−1)−i (Confn(M);Q) for dimW = d , k = 2,
m = dimQHd−1(M;Q).
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Strategy overview

Try to build a map C∗(Conf(M))⊗ C∗(Conf(M))→ C∗(Conf(M)).

Using factorization homology, just need to build a map
C∗(Conf(Rd))⊗ C∗(Conf(Rd))→ C∗(Conf(Rd)).

Use operadic cells to find the obstruction to building such a map.
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Algebra over the little disks operad

Definition

Let Ed(n) be the space of n d-dimensional disks in an n-dimensional disk.

Definition

An Ed -algebra is a space A and maps Ed(n)× An → A such that ...
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Examples of Ed -algebras

Conf(Rd) is an Ed -algebra.

N, ΩdX , Conf(Rd)× Conf(Rd) are also Ed -algebras.
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Factorization homology

Input of factorization homology: An Ed -algebra A and a d-manifold M.
Output of factorization homology: A space

∫
M A.

Example∫
M Conf(Rd) ' Conf(M).∫
M N ' Sym(M).∫
M ΩdX ' Mapc(M,ΣdX )∫
M Conf(Rd)× Conf(Rd) ' Conf(M)× Conf(M).

Warning: I am sporadically assuming the manifolds are parallelizable.
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Question: What is the data of a based map S1 × S1 → X?

Answer: Two maps f , g : S1 → X and a choice of null homotopy of [f , g ].

S1 × S1 = S1 ∨ S1 with a cell attached along the commutator.
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Commutator for Ed -algebras

Ed(2) ' Sd−1. Plugging in the fundamental class into E2(2)× A× A→ A
gives a Lie bracket

[ , ] : Hi (A)⊗ Hj(A)→ Hi+j+d−1(A).

Class of a point gives a product • : Hi (A)⊗ Hj(A)→ Hi+j(A).
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Classical cell attachments

Let X be a space. Let f : SN−1 → X be a map. X with a cell attached
along f is the pushout:

SN−1 f−−−−→ Xy y
DN −−−−→ X ∪f DN
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Ed -cell attachments

Let Ed denote the free Ed -algebra functor. Let A be an Ed -algebra. Let
f : SN−1 → A be a map. X with an Ed -cell attached along f is the
pushout (in the category of Ed -algebras):

EdS
N−1 f−−−−→ Ay yc

EdD
N −−−−→ A ∪Ed

f DN
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Free Ed -algebras

For Y a space, EdY is the configuration space of disks with labels in Y .

Ed{pt} ' Conf(Rd).

Ed{red , blue} is homotopy equivalent to the configuration of red and
blue points in Rd .
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Examples of Ed -cell structures

Ed{pt} ' Conf(Rd) is obtained from the trivial Ed -algebra by
attaching one 0-cell.

Ed{red , blue} is obtained from the trivial Ed -algebra by attaching two
0-cells.

Conf(Rd)× Conf(Rd) ' Ed{red} × Ed{blue} is equivalent to
Ed{red , blue} with a cell attached along [red , blue].

Will think of red ∈ H0(Conf1(Rd)) and blue ∈ H0(Conf1(Rd)).
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Universal mapping property of Ed -cell attachments

Let f : SN−1 → A. A map A ∪Ed
f DN → B is the data of a map of

Ed -algebras A→ B and a null homotopy (in spaces) of the map
SN−1 → A→ B.

A map f : Conf(Rd)× Conf(Rd)→ A is a choice of f (red) ∈ A and
f (blue) ∈ A and a choice of null homotopy of [f (red), f (blue)].

red ∈ H0(Conf1(Rd)), blue ∈ H0(Conf1(Rd)).

Warning: I will be cavalier about spaces vs chain complexes vs homology.
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Applying factorization homology

A choice of f (red) ∈ Conf(Rd) and f (blue) ∈ Conf(Rd) and a choice
of null homotopy of [f (red), f (blue)] gives a map

f : Conf(Rd)× Conf(Rd)→ Conf(Rd).

∫
M Conf(Rd) ' Conf(M).

A choice of f (red) ∈ Conf(Rd) and f (blue) ∈ Conf(Rd) and a choice
of null homotopy of [f (red), f (blue)] gives a map

f : Conf(M)× Conf(M)→ Conf(M).
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Constructing the periodic stability map

Let teal be the generator of H0(Conf1(Rd)).
[tealp, teal ] = p(teal)p−1[teal , teal ] = 0 ∈ Hd−1(Confp+1(Rd);Fp).

Letting f (red) = tealp and f (blue) = teal gives a map:

f : Hi (Confn(M);Fp)⊗ Hj(Confm(M);Fp)

→ Hi+j(Confpn+m(M);Fp).

This restricts to a map

H0(Conf1(M);Fp)⊗ Hj(Confm(M);Fp)→ Hj(Confm+p(M);Fp).
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Picture of periodict stability map

H0(Conf1(M);Fp)⊗ Hj(Confm(M);Fp)→ Hj(Confm+p(M);Fp).
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Stable periodicity

Theorem (Cantero–Palmer, Nagpal, Kupers–M.)

For M connected and n� i , Hi (Confn(M);Fp) ∼= Hi (Confn+p(M);Fp)
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Constructing the extremal stability map

[[teal , teal ], teal ] = 0.

Letting f (red) = [teal , teal ] ∈ Hd−1(Conf1(Rd)) and f (blue) = teal
gives a map:

f : Hi (Confn(M))⊗ Hj(Confm(M))

→ Hi+(d−1)n+j(Conf2n+m(M)).

This restricts to a map

Hd−1(Conf1(M))⊗ Hj(Confm(M))→ Hj+2d−2(Confm+2(M)).
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Picture of extremal stability map

Hd−1(Conf1(M))⊗ Hj(Confm(M))→ Hj+2d−2(Confm+2(M)).
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Theorem (Knudsen–M.–Tosteson)

Let d = dimM. Let νn = (d − 1)n + 1. There are polynomials poddi and
peveni of degree ≤ dimQHd−1(M;Q) such that, for n� i ,

dimQHνn−i (Confn(M);Q) =

{
peven(n) if n is even

podd(n) if n is odd.
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The end
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