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Introduction : statement of the main result

Context: Artin action

The group G = PMCG•(S2, n) acts on π1(S2 − {n pts}) ∼= Fn−1.

Main theorem (D., 2020)

Let β ∈ G and k ≥ 1.

β ∈ Γk(G ) ⇔ ∀w ∈ Fn−1, β(w) ≡ w [Γk+1(Fn−1)].

(⇒) is easy;

(⇐) is difficult;

Right side: computable.
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Computations: Milnor invariants

Artin action

β ∈ G = PMCG•(S2, n)  a basis-conjugating automorphism of
Fn−1 = π1(S2 − {n pts}): xi 7→ wixiw

−1
i (i = 1, 2, ..., n − 1).

Magnus expansions

Each wi ∈ Fn−1 is a word in the x±1
j . Get a formal power series

Φ(wi ) in the (non-commuting) Xj by xj 7→ 1 + Xj .

E.g.: Φ(x1x−1
2 x3) = (1 + X1)(1− X2 + X 2

2 − ...)(1 + X3).

Milnor invariants

Coefficients of monomials of degree d in the Φ(wi )− 1 are
integers, called Milnor invariants of degree d of β.
∀w ∈ Fn−1, β(w) ≡ w [Γk+1(Fn−1)]

⇔ Milnor invariants of degree < k are trivial.
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The Mapping Class Group of the punctured sphere

MCG•(S2, n)
Isotopy classes of self-homeomorphisms of the sphere, permuting n
points and fixing a basepoint.

MCG•(S2, n) Bn
∼= MCG∂(D2, n) ? Z

PMCG•(S2, n) Pn
∼= PMCG∂(D2, n) ? Z

=

Kernels generated by ξn ”full twist” (Dehn twist around ∂D2), and
〈ξn〉 = Z(Bn) = Z(Pn).

PMCG•(S2, n) ∼= Pn/Z =: P∗n .



1. Braids and MCGs 2. Group filtrations 3. The Andreadakis problem 4. Main results

The center of the braid group

Z(Bn) = Z(Pn) = 〈ξn〉.

ξ5 as a braid ξ5 as a mapping class
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The center of the braid group

ξ5 as a mapping class

ξ5 as an automorphism of π1(D2 − {5 pts}) = F5

Its acts by conjugation by ∂5 = x1x2x3x4x5.
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Artin actions

The group Bn = MCG∂(D2, n) acts on π1(D2 − {n pts}) ∼= Fn.

Theorem (Artin, 1925)

This action is faithful and Bn
∼= Aut∂C (Fn), where ∂ = x1 · · · xn.

The group B∗n = MCG•(S2, n) acts on π1(S2 − {n pts}) ∼= Fn−1.

Theorem (Magnus, 1934)

This action is faithful.

The latter can be seen as a quotient of the former.
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Group filtrations

Notations

In a group G :

[x , y ] = xyx−1y−1,

xy := y−1xy and yx := yxy−1,

[A,B] = 〈[a, b]〉(a,b)∈A×B .

Filtration on a group G

Nested sequence of subgroups G = G1 ⊇ G2 ⊇ G3 ⊇ · · · such that:

∀i , j ≥ 1, [Gi ,Gj ] ⊆ Gi+j .

The lower central series Γ∗(G ): the minimal filtration on G{
Γ1(G ) = G ,

Γk+1(G ) = [G , Γk(G )].
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Lie rings associated to group filtrations

L(G∗) :=
⊕
i≥1

Gi/Gi+1 is a graded abelian group.

Commutators in G  [−,−] : L(G∗)× L(G∗) 7−→ L(G∗).

In G = G1

[x , y ]−1 = [y , x ],

[x , yz] = [x , y ] · (y [x , z]) ,

[[x , y ], yz] · [[y , z], zx ]

· [[z , x ], xy ] = 1.

In L(G∗)

[y , x ] = −[x , y ],

[x , y + z] = [x , y ] + [x , z],

[[x , y ], z] + [[y , z], x ]

+ [[z , x ], y ] = 0.

Consequence

L(G∗) is a graded Lie ring (= a graded Lie algebra over Z).
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Lie ring of a group

Notation

L(G ) := L(Γ∗G ).

Theorem (Magnus, 1931)

L(Fn) = Ln is the free Lie ring on n generators.

In general, L(G ) can be difficult to compute.
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The Andreadakis filtration

Two filtrations on IAn

Aut(Fn)

IAn = A1

Γ2(IAn) A2

Γ3(IAn) A3

· · · · · ·

⊂

⊂

⊂

⊃

⊂

⊂

⊂

⊂ ⊂

Definitions

IAn = ker
(
Aut(Fn)→ Aut(F ab

n )
)

(automophisms acting trivially on the
abelianization F ab

n
∼= Zn)

Ak = ker (Aut(Fn)→ Aut(Fn/Γk+1))

(automophisms acting trivially modulo
Γk+1(Fn))

Residual nilpotence⋂
k

Γk(Fn) = {1} ⇒
⋂
k
Ak = {id} ⇒

⋂
k

Γk(IAn) = {id}.
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The Andreadakis problem

Conjecture (Andreadakis - 1965)

Do we always have Γk(IAn) = Ak ?

Bartholdi (2013)

No.

Problem (Bartholdi - 2013)

Are they the same up to finite index ?

Bartholdi (2017)

Not even !

This uses computer calculations, notably by Day and Putman (’17).
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Restriction to subgroups

Let G ⊆ IAn be a subgroup.

3 filtrations on G

Γ∗(G ) ⊆ G ∩ Γ∗(IAn) ⊆ G ∩ A∗.

Problem (Andreadakis for subgroups)

When are these the same ?

Obviously, not always. When it is the case, we say that G satisfies
the Andreadakis equality.

Theorem (Habegger-Mausbaum ’00, Mostovoy-Willerton ’02)

For G = Pn = PMCG∂(D2, n) acting (faithfully) on
Fn = π1(D2 − {n pts}), the Andreadakis equality holds:

Γ∗(Pn) = Γ∗(IAn) ∩ Pn = A∗ ∩ Pn.

Our goal: G = P∗n ⊆ IAn−1.
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Another set of Milnor invariants

A direct product decomposition

Pn P∗n = Pn/Z
s

⇒ Pn
∼= Z×P∗n .

Γk(Pn) ∼= Γk(Z)× Γk(P∗n).

β ∈ Γk(P∗n) ⇔ s(β) ∈ Γk(Pn)

⇔ Milnor invariants of s(β) of degree < k vanish.

Comparison with our Milnor invariants

Milnor invariants of s(β) � Fn [Artin action]
6= Milnor invariants of β � Fn−1 [Magnus action].

The first ones depend on the choice of s.

The second ones distinguish elements of P∗n if and only if the
Magnus action is faithful.
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Translation in terms of Lie algebras

The Johnson morphism

IAn � Fn  L(A∗) � L(Fn) ∼= Ln (action on the free Lie ring).

! τ : L(A∗)→ Der(Ln), injective by definition of A∗.

Explicitly: τ (σ) : x 7→ σ(x)x−1 (for σ ∈ IAn, x ∈ Fn).

The Andreadakis equality for G ⊆ IAn

Γ∗(G ) = G ∩ A∗ ?

⇔ i# : L(G )→ L(A∗) is injective.

⇔ τ ◦ i# : L(G )→ L(A∗) ↪→ Der(Ln) is injective.

⇔ τ : L(G )→ Der(Ln) is injective.
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Translation in terms of Lie algebras

The Andreadakis equality for G ⊆ IAn

Γ∗(G ) = G ∩ A∗ ?

⇔ i# : L(G )→ L(A∗) is injective.

⇔ τ ◦ i# : L(G )→ L(A∗) ↪→ Der(Ln) is injective.

⇔ τ : L(G )→ Der(Ln) is injective.

Proof of (⇐): An element x ∈ Ak ∩ G − Γk(G ) must be in Γj(G )
but not in Γj+1(G ) for some j < k. It would then give a non-trivial
class x in Γj(G )/Γj+1(G ). Since x ∈ Ak ⊆ Aj+1, the image of x in
Aj/Aj+1 would be trivial, hence x ∈ ker(i#)− {0}.
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Main result

Theorem (D., 2020)

For G = P∗n = PMCG•(S2, n) acting (faithfully) on
Fn−1 = π1

(
S2 − {n pts}

)
, the Andreadakis equality holds:

Γ∗(P∗n) = A∗ ∩ P∗n .

Otherwise said, for all k ≥ 1 and all β ∈ P∗n ,

β ∈ Γk(P∗n) ⇔ ∀w ∈ Fn−1, β(w) ≡ w [Γk+1(Fn−1)].

Equivalently, the Johnson morphism τ : L(P∗n)→ Der(Ln−1) is
injective.

Thus, L(P∗n) identifies to a sub-Lie ring of Der(Ln−1) (and
generators are known). In particular, it is without torsion.
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Decomposition of P∗n

Pn
∼= Aut∂C (Fn){

xi 7→ wixiw
−1
i (i ≤ n),

∂n = x1 · · · xn is fixed.

P∗n
∼= Inn(Fn−1)Pn−1{

xi 7→ wixiw
−1
i (i ≤ n − 1),

∂n−1 = x1 · · · xn−1 7→ w∂n−1w−1.

A quotient

Pn acts on Fn/∂n = Fn/(xn = ∂−1
n−1) ∼= Fn−1:

x1 · · · xn = 1 ⇔ xn = (x1 · · · xn−1)−1.

This factors through Pn/ξn = P∗n :

ξn acts on Fn by conjugation by ∂n.
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Decomposition of filtrations

Theorem (D., 2020)

K subgroup of IAn ( τ : L(K )→ Der(Ln)). Suppose that:

K satisfies the Andreadakis equality A∗ ∩ K = Γ∗(K )
(τ is injective),

Every element of τ(L(K )) ∩ ad(Ln) equals τ(x) for some
x ∈ K ∩ Inn(Fn).

Then G = Inn(Fn)K also satisfies the Andreadakis equality:

A∗ ∩ G = Γ∗(G ).

This is a rare result.
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Decomposition of filtrations on P∗n

Application to P∗n ⊂ IAn−1

Decomposition: P∗n = Inn(Fn−1)Pn−1.

K = Pn−1 satisfies the Andreadakis equality. X

τ(L(Pn−1)) ∩ ad(Ln−1) = Z ·τ
(
ξn−1

)
and

ξn−1 ∈ Pn−1 ∩ Inn(Fn−1). X

Thus P∗n ⊂ IAn−1 satisfies the Andreadakis equality.

A derivation d in τ(L(Pn−1)) must send ∂n−1 = X1 + · · ·+ Xn−1

to 0. If d = [w ,−] for some w ∈ Ln, then w must be in Z ·∂n−1.
But [∂n−1,−] = τ(ξn−1), which acts on Fn−1 by conjugation by
x1 · · · xn−1.
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