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Introduction : statement of the main result

Context: Artin action
The group G = PMCG,(S?, n) acts on 71(S? — {n pts}) = F,_1.

Main theorem (D., 2020)

Let B € G and k > 1.

B € Fk(G) & VYw e Fn717 ﬁ(W) =w [Fk+1(F,,,1)].

o (=) is easy;
o («) is difficult;
o Ri

ight side: computable.



Computations: Milnor invariants

Artin action

B € G = PMCG,(S?, n) ~ a basis-conjugating automorphism of
Fo1 =m1(S? — {n pts}): x; — W,-x,-wf1 (i=1,2,...,n—1).

Magnus expansions

Each w; € F,_1 is a word in the xjﬂ. Get a formal power series
®(w;) in the (non-commuting) X; by x; — 1+ X;.

Eg: ®(xxy x3) = (1+X1)(1 - Xo+ XZ —..)(1 + X3).

Milnor invariants

Coefficients of monomials of degree d in the ®(w;) — 1 are
integers, called Milnor invariants of degree d of .
VYw € Fnro1, B(w) = w [Tq1(Fr-1)]

< Milnor invariants of degree < k are trivial.
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The Mapping Class Group of the punctured sphere

MCG.(S2, n)

Isotopy classes of self-homeomorphisms of the sphere, permuting n
points and fixing a basepoint.

MCG,(S?,n) «—— B, = MCGy(D? n) +—— ? +—— 7

] ] [

PMCG4(S?, n) «—— P, = PMCGy(D?,n) +—— ? «—— 7

Kernels generated by &, "full twist” (Dehn twist around 9D?), and
(€n) = Z(Bn) = Z(Pn).

PMCG,(S?, n) & P,/ Z =: P, |




ids and MCGs

The center of the braid group

Z(Bn) = Z(Pn) = <§n> J

&s as a braid &5 as a mapping class
AT

/7
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The center of the braid group

&5 as a mapping class

&5 as an automorphism of 71(D? — {5 pts}) = Fs

Its acts by conjugation by 05 = x1x2x3x4Xs5.
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Artin actions

The group B, = MCGy(ID?, n) acts on 71(D? — {n pts}) = F,,. J

Theorem (Artin, 1925)

This action is faithful and B, = Aut‘Z(Fn), where O = x1 -+ Xp.

The group B = MCG,(S?, n) acts on 71(S? — {n pts}) = F,_1. J

Theorem (Magnus, 1934)
This action is faithful.

The latter can be seen as a quotient of the former. )
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Group filtrations

In a group G:

o [x,y] =xyx~lyt,
o x¥ =y Ixy and ¥x := yxy !,

o [A,B] = ([a, b]>(a,b)€A><B-

Filtration on a group G

Nested sequence of subgroups G = G; O Gy D G3 D - - - such that:

VI,_] > 17 [Gh G_j] - Gi+j-

The lower central series . (G): the minimal filtration on G

r(G)=¢G,
Mk+1(G) =[G, T(G)].
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Lie rings associated to group filtrations

L(G,) = @ G;/Gjy1 is a graded abelian group. J
i>1

Commutators in G~ [—,—]: L(G,) X L(G,) — L(G,). J

° [y,x] =—[xyl,

o [x,y+2] =[x y]+[x,2],

o [[x,y], 2] +[ly, 2], X]
+[[z,x],y] = 0.

o [x, ¥yt =y, ],

o [x,yz] = [x,y] - (Y[x,2]),

o [[x,y],2] - [ly, 2], %]
[lz,x],°y] = 1.

Consequence

L(G,) is a graded Lie ring (= a graded Lie algebra over Z).
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Lie ring of a group

L(G) == L(T.,.G).

Theorem (Magnus, 1931)

L(F,) = £, is the free Lie ring on n generators.

In general, £(G) can be difficult to compute.
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The Andreadakis filtration

Two filtrations on /A,

Aut(F,)
U IA, = ker (Aut(F,) — Aut(F2?))
1A, = Ay (automophisms acting trivially on the
¢ O abelianization F2b = 7")
M2 (/A c A
2(U n) U2 Ay = ker (Aut(F,,) — Aut(Fn/Fk+1))
F3(/A)) < As (automophisms acting trivially modulo
s S| TealFa))

Residual nilpotence

Qrk(Fn):{l} = DAk:{id} = Qrk(lAn):{id}'
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The Andreadakis problem

Conjecture (Andreadakis - 1965)
Do we always have T (I1A,) = Ak ?

Bartholdi (2013)
No.

Problem (Bartholdi - 2013)

Are they the same up to finite index ?

Bartholdi (2017)

Not even !

This uses computer calculations, notably by Day and Putman ('17).
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Restriction to subgroups

Let G C IA, be a subgroup.

3 filtrations on G
N(G) € Gnr.(lA,) € GnNA..

Problem (Andreadakis for subgroups)

When are these the same ?

Obviously, not always. When it is the case, we say that G satisfies
the Andreadakis equality.

Theorem (Habegger-Mausbaum '00, Mostovoy-Willerton '02)

For G = P, = PMCGy(D?, n) acting (faithfully) on
F, = m1(D? — {n pts}), the Andreadakis equality holds:

F(Py) = TL(IA) N Py = A, N P,

Our goal: G =P} C IA,—1.
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Another set of Milnor invariants

A direct product decomposition
S

Po 5 Pr=P,J2 = P,=ZLxP.

F(Pn) = Ti(Z) % Ti(P7). J

BelPy) < s(B)eTk(Pn)
< Milnor invariants of s(3) of degree < k vanish.

v

Comparison with our Milnor invariants

Milnor invariants of s(3) O F, [Artin action]
# Milnor invariants of 5 O F,_; [Magnus action].

@ The first ones depend on the choice of s.

@ The second ones distinguish elements of P} if and only if the
Magnus action is faithful.
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Translation in terms of Lie algebras

The Johnson morphism
1A, O Fp ~ L(A) O L(F,) = £, (action on the free Lie ring).
e~ 11 L(As) — Der(£,), injective by definition of A,.

Explicitly: 7 (@) : X — o(x)x~1 (for o € IA,, x € Fp,). )

The Andreadakis equality for G C /A,

r(G)=GnA,?
& iy L(G) = L(A,) s injective.
& Toiy: L(G) — L(A) — Der(£,) is injective.
< 7:L(G) — Der(£,) is injective.
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Translation in terms of Lie algebras

The Andreadakis equality for G C /A,
r(G)=GnA,?
& iy L(G) = L(A,) s injective.
& Toiy: L(G) = L(A,) — Der(£,) is injective.
& 7:L(G) — Der(£,) is injective.

Proof of (<): An element x € Ay N G — '(G) must be in [;(G)

but not in I'j;1(G) for some j < k. It would then give a non-trivial
class X in [j(G)/Tj+1(G). Since x € Ay C Aj;1, the image of X in
Aj/Aj+1 would be trivial, hence X € ker(iy) — {0}.
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Main result

Theorem (D., 2020)

For G = P} = PMCG,(S?, n) acting (faithfully) on
Fro1=m (82 —{n pts}), the Andreadakis equality holds:

r«(P;)=A.NP;.
Otherwise said, for all k > 1 and all g € P},
Belk(P,) & VYweF,1, B(w)=w [[p1(Fa-1)]

Equivalently, the Johnson morphism T : L(P};) — Der(£,-1) is
injective.

Thus, £(P;};) identifies to a sub-Lie ring of Der(£,-1) (and
generators are known). In particular, it is without torsion.
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Decomposition of P;

{Xi = wixiw; (i < n), {Xi = wixw; ' (i < n—1),
1

On = X1 -+ Xp is fixed. On-1=X1"Xp—1 + WOp_1w =,

A quotient

P, acts on F,/0, = Fp/(xn = (‘3;_11) ~Fo 1

X1 Xp=1 & x,= (xl---x,,_l)_l.

This factors through P,/&, = P;:

&, acts on Fj, by conjugation by 0.
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Decomposition of filtrations

Theorem (D., 2020)
K subgroup of IA, (~ 7 : L(K) — Der(£,)). Suppose that:
o K satisfies the Andreadakis equality A, N K = T.(K)
(T is injective),
e Every element of T(L(K)) Nad(£,) equals 7(X) for some
x € KNInn(F,).

Then G = Inn(F,)K also satisfies the Andreadakis equality:

AN G =T,(G).

This is a rare result. )
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Decomposition of filtrations on P;,

Application to P} C IA,—1
Decomposition: P; = Inn(Fp_1)Pp_1.
@ K = P,_; satisfies the Andreadakis equality. v/

o 7(L(Pn-1))Nad(Lp-1) =Z-7 (§,_1) and
¢n1 € P |nn(F,-,_1). ve
Thus P;; C IA,_1 satisfies the Andreadakis equality.

A derivation d in 7(£L(P,_1)) must send 0,1 = X + -+ Xp_1
to 0. If d = [w, -] for some w € £,, then w must be in Z-Op_1.
But [0p—1,—] = 7(§,_1), which acts on F,_; by conjugation by
Xl .. .anli
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