

# Embeddings in Euclidean space and Galois actions

Pedro Boavida de Brito  
Instituto Superior Técnico, Lisboa

Moduli and friends  
16 May 2022

$M$  smooth, compact w/o boundary

$$\text{emb}(M, \mathbb{R}^n) = \text{space of smooth embeddings } M \hookrightarrow \mathbb{R}^n$$

We know something about  $\pi_0$  in certain cases. E.g.

- ▶ non-empty for  $n \geq 2m$  (Whitney) and trivial for  $n \geq 2m + 2$  (Hirsch).
- ▶ for spheres and in  $\text{codim} \geq 3$ , it is trivial in the "metastable range"  $2n \geq 3m + 4$  and can more generally be described in homotopy theoretic terms (Haefliger).
- ▶ in low dimensions, e.g. 3-manifolds in  $\mathbb{R}^6$ , 4-manifolds in  $\mathbb{R}^7$  (Crowley-Skopenkov, ...).
- ▶ Many ...

Homotopy or homology, rationally or at a prime? How do these depend on  $M$  and its smooth structure?

## Immersions

$\text{imm}(M, \mathbb{R}^n) = \text{space of smooth immersions } M \rightarrow \mathbb{R}^n$

Smale-Hirsch: the derivative map

$$\text{imm}(M, \mathbb{R}^n) \rightarrow \text{Hom}^{inj}(TM, T\mathbb{R}^n)$$

sending  $f$  to  $df$ , is a weak equivalence provided  $m < n$ .

$\rightsquigarrow$  an immersion exists if and only if  $\exists$   $(n - m)$ -dim bundle  $\mu$  on  $M$  with  $TM \oplus \mu$  trivial. This typically depends on the smooth structure of  $M$ , although for  $2n > 3m$  it doesn't (Haefliger-Hirsch).

$\rightsquigarrow$  the rational homotopy type of each component depends fairly little on  $M$ , e.g. if the codimension is odd and  $M$  is 1-connected, it only depends on the rational homotopy type of  $M$  (Abdoukkader).

Look at

$$\overline{\text{emb}}(M, \mathbb{R}^n) := \text{hofiber}(\text{emb}(M, \mathbb{R}^n) \rightarrow \text{imm}(M, \mathbb{R}^n))$$

over a fixed immersion  $f : M \rightarrow \mathbb{R}^n$ .

An important and easy special case:  $\overline{\text{emb}}(\mathbb{R}^m, \mathbb{R}^n) \simeq *$  and for a finite set  $S$ ,

$$\overline{\text{emb}}(S \times \mathbb{R}^m, \mathbb{R}^n) \xrightarrow{\simeq} \text{emb}(S, \mathbb{R}^n)$$

Note that  $\overline{\text{emb}}(M, \mathbb{R}^n)$  may be empty! We won't be able to say much about  $\pi_0 \overline{\text{emb}}(M, \mathbb{R}^n)$  in what follows. But we'll try say something about the homotopy type of each component.

## Theorem (Arone-Turchin,Fresse-Turchin-Willwacher)

Let  $M$  be a closed  $m$ -manifold and  $f : M \rightarrow \mathbb{R}^n$  an immersion.  
Under certain assumptions, there is a map

$$\overline{\text{emb}}(M, \mathbb{R}^n) \rightarrow \mathbb{R}\text{map}_{\text{Fin}_{\leq k}}(\text{map}(-, M), P_n^{\mathbb{Q}})$$

which, restricted to each path component, is rationally  $\ell$ -connected for  $\ell = 3 - n + (k + 1)(n - m - 2)$  and  $2 \leq k \leq \infty$ .

Here:

- ▶  $\mathbb{R}\text{map}_{\text{Fin}_{\leq k}}$  the space of derived maps between functors  $\text{Fin}_{\leq k}^{\text{op}} \rightarrow \text{Spaces}$ ,
- ▶  $\text{map}_{\text{Fin}_{\leq k}}(-, M)$  is the functor  $S \mapsto \text{map}(S, M)$ ,
- ▶  $P_n^{\mathbb{Q}}$  is the Sullivan realization of  $S \mapsto H^*(\text{emb}(S, \mathbb{R}^n), \mathbb{Q})$  (left adjoint to polynomial forms  $\Omega_{\text{poly}}^* : \text{Spaces}^{\text{op}} \rightarrow \text{cdga}$ ).

## Theorem (Arone-Turchin,Fresse-Turchin-Willwacher)

Let  $M$  be a closed  $m$ -manifold and  $f : M \rightarrow \mathbb{R}^n$  an immersion.  
Under certain **assumptions**, there is a map

$$\overline{\text{emb}}(M, \mathbb{R}^n) \rightarrow \mathbb{R}\text{map}_{\text{Fin}_{\leq k}}(\text{map}(-, M), P_n^{\mathbb{Q}})$$

which, restricted to each path component, is rationally  $\ell$ -connected for  $\ell = 3 - n + (k + 1)(n - m - 2)$  and  $2 \leq k \leq \infty$ .

- ▶ AT require codimension roughly  $\geq m$ . Then all spaces are path-connected. FTW require  $n - m \geq 3$  and that the immersion  $f : M \rightarrow \mathbb{R}^n$  factors through  $\mathbb{R}^{n-2}$ .

**Goal:** explain a different proof, with a slightly weaker assumption, which also gives some partial results on torsion.

By adjunction,

$$\mathbb{R}\text{map}_{\text{Fin}}(\text{map}(-, M), P_n^{\mathbb{Q}}) \simeq \mathbb{R}\text{map}_{\text{Fin}}(H^*(E_n, \mathbb{Q}), \Omega^*(\text{map}(-, M)))$$

and FTW express the homotopy groups of the right hand side as the homology of a certain graph complex. The graphs are like those describing  $H^*(E_n, \mathbb{Q})$ , but with extra hairs that are labelled by elements in a chosen rational model for  $M$ .

# Homotopy invariance

## Corollary (Arone-Lambrechts-Volic)

Let  $M \rightarrow M'$  be a rational homotopy equivalence of  $m$ -dimensional submanifolds of  $\mathbb{R}^k$ ,  $k \leq n - 2$ . Then

$$\overline{\text{emb}}(M, \mathbb{R}^n)_{\text{incl.}} \simeq_{\mathbb{Q}} \overline{\text{emb}}(M', \mathbb{R}^n)_{\text{incl.}}$$

## Corollary

Let  $i : M \rightarrow \mathbb{R}^n$  and  $i' : M' \rightarrow \mathbb{R}^n$  be embeddings. Suppose  $i$  and  $i'$  can be isotoped to homotopic embeddings in some submanifold  $N \subset \mathbb{R}^n$  of  $\text{codim} \geq 2$  (i.e. there is  $j : M \rightarrow M'$  such that  $i \sim i'j$  as maps  $M \rightarrow N$ ). If  $j : M \xrightarrow{\sim_{\mathbb{Q}}} M'$  then

$$\overline{\text{emb}}(M, \mathbb{R}^n)_i \simeq_{\mathbb{Q}} \overline{\text{emb}}(M', \mathbb{R}^n)_{i'}$$

## Corollary

*Two homotopic compressible embeddings  $i : M \hookrightarrow N \subset \mathbb{R}^n$  have rat. homotopy equivalent  $\overline{\text{emb}}(M, \mathbb{R}^n)_i$ .*

~~ c.f. Skopenkov: if  $M$  is a 3-manifold with  $H_1(M)$  having no 2-torsion, any two embeddings in  $\mathbb{R}^6$  which are compressible in  $S^4$  or  $S^2 \times S^2$  are isotopic.

~~ No longer true if the word compressible is dropped. For example, the component of the Hopf link  $S^a \amalg S^b \rightarrow \mathbb{R}^{a+b+1}$  does not have the same (rat.) homotopy type as that of the unlink.

## Detecting configurations using barycenters

Suppose  $M$  is triangulated, i.e.  $M \cong |X|$  for some (non-singular) simplicial set  $X$ .

**Task:** describe  $\overline{\text{emb}}(M, \mathbb{R}^n)$  in terms of  $X$ , as much as possible.

For a parallel, let us look at the space of continuous maps  
 $\text{map}(M, N)$

$$\begin{aligned}\text{map}(M, N) &\cong \text{map}(|X|, N) \\ &\simeq \text{map}(\text{hocolim}_{s \in \Delta} X_s, N) \\ &\simeq \text{holim}_{s \in \Delta} \text{map}(X_s, N)\end{aligned}$$

Of course, this can't work for embeddings. Face maps  $X_s \rightarrow X_{s-1}$  not injective, so  $[s] \mapsto \text{emb}(X_s, N)$  isn't a functor.

## Get around: thickening

### Definition

Let  $\mathcal{O}$  be the poset of open subsets  $T \subset [0, 1]$  such that  $\pi_0 T$  is finite,  $\partial[0, 1] \subset T$  and  $T \neq [0, 1]$ .

There is a functor

$$\mathcal{O} \rightarrow \Delta^{\text{op}}$$

sending  $T$  to  $\pi_0([0, 1] \setminus T)$ . (Example of face and deg. maps) This is an  $\infty$ -localization. That is,

$$\{\text{simplicial objects on } \mathcal{C}\} \leftrightarrows \{\text{functors } \mathcal{O} \rightarrow \mathcal{C} \text{ which send isotopy equivalences to weak equivalences.}\}$$

## Definition

Given  $T \in \mathcal{O}$ , let  $\Delta_T^n = \{(t_1 \leq \cdots \leq t_n) : t_i \in T\} \subset \Delta^n$ .

(examples)

Assume (for simplicity) that  $X$  is such that every face of a non-deg simplex is non-deg (e.g. a simplicial complex). Define

$$U(T) = \bigcup_{\sigma \in X} \Delta_T^{|\sigma|} \subset \bigcup_{\sigma \in X} \Delta^{|\sigma|} = |X|$$

If  $T \subset T'$  then  $U(T) \subset U(T')$ , i.e.  $U$  defines a functor from  $\mathcal{O}$  to the poset of open subsets of  $M$ .

## Definition

Let

$$\Gamma : \mathcal{O}^{\text{op}} \rightarrow \text{Spaces}$$

be the functor that sends  $T$  to

$$\overline{\text{emb}}(U(T), N) = \text{hofiber}[\text{emb}(U(T), N) \rightarrow \text{imm}(U(T), N)] .$$

- ▶ For  $T \in \mathcal{O}$  with  $s$  interior components,  $U(T) \simeq X_s$ .
- ▶ And  $\overline{\text{emb}}(U(T), N) \simeq \overline{\text{emb}}(X_s \times \mathbb{R}^m, N) \simeq \text{emb}(X_s, N)$ , at least if  $n - m \geq 3$ .

Formally,  $\Gamma$  extends to a cosimplicial space  $\Delta \rightarrow \text{Spaces}$ ,

- ▶  $\Gamma^s \simeq \text{emb}(X_s, N)$
- ▶ for each  $\theta : [s] \rightarrow [t]$  in  $\Delta$  there is a homotopy commutative diagram

$$\begin{array}{ccc}
 \Gamma^s & \xleftarrow{\simeq} & \overline{\text{emb}}(X_s \times \mathbb{R}^m, \mathbb{R}^n) \\
 \theta_* \downarrow & & \downarrow f_\theta^* \\
 \Gamma^t & \xleftarrow{\simeq} & \overline{\text{emb}}(X_t \times \mathbb{R}^m, \mathbb{R}^n)
 \end{array}$$

where  $f_\theta : X_t \times \mathbb{R}^m \hookrightarrow X_s \times \mathbb{R}^m$  is any embedding such that  $\pi_0 f_\theta = \theta^* X$ .  $\rightsquigarrow \theta^*$  does not depend on the smooth structure of  $M$  up to homotopy.

## Theorem (B.-Lambrechts-Songhafouo-Pryor)

$$\overline{\text{emb}}(M, N) \simeq \underset{\Delta}{\text{holim}} \Gamma \text{ provided } n - m \geq 3.$$

(Generalises Sinha's cosimplicial model for 1-dimensional  $M$ .)

### Step of proof.

Embedding calculus:  $\overline{\text{emb}}(-, N)$  is a homotopy sheaf with respect to covers  $\{U_i \rightarrow M\}$  where each finite subset  $S \subset M$  is contained in some  $U_i$ . The open subsets  $\{U(T)\}$  form one such cover: assume  $S \subset \Delta^m$ , some top. dim. simplex. Pick  $T \in \mathcal{O}$  containing all the coordinates of  $S$ . Then  $S \subset U(T)$ . □

More generally,

$$\overline{\text{emb}}(M, N) \rightarrow \underset{[s] \in \Delta}{\text{holim}} \underset{S \subset X_s, |S| \leq k}{\text{holim}} \text{"emb}(S, N)"$$

is highly-connected.

## Lemma

*The map*

$$\text{holim}_{\Delta_{\leq s}} \Gamma \rightarrow \text{holim}_{\Delta_{\leq s-1}} \Gamma$$

*is  $\ell$ -connected with  $\ell = \frac{1}{m}[s(n-m-2) - n + 2]$ .*

## Corollary

*The associated spectral sequence converges for  $n-m \geq 3$ .*

*Using results of Farjoun:*

## Corollary

*The natural map*

$$(\text{holim}_{\Delta} \Gamma)_{\mathbb{Q}} \rightarrow \text{holim}_{\Delta} \Gamma_{\mathbb{Q}}$$

*is a weak equivalence when restricted to each component.*

## Corollary

$\text{emb}(M, \mathbb{R}^n)$  and  $\overline{\text{emb}}(M, \mathbb{R}^n)$  are nilpotent spaces.

# Formality and a proof of the AT-FTW theorem

## Proposition (B.-Horel)

Under assumptions (...), the cosimplicial space  $\Gamma_{\mathbb{Q}}$  is formal, i.e. there is a zigzag of weak equivalences between  $\Gamma_{\mathbb{Q}}$  and its homology  $H \circ \Gamma_{\mathbb{Q}}$ .

$\Rightarrow \Gamma_{\mathbb{Q}} : \Delta \rightarrow \text{Spaces}_{\mathbb{Q}}$  factors as

$$\Delta \xrightarrow{X} \text{Fin} \xrightarrow{P_n^{\mathbb{Q}}} \text{Spaces}_{\mathbb{Q}}$$

since both are formal and have the same homology. And so

$$\operatorname{holim}_{\Delta} \Gamma_{\mathbb{Q}} \simeq \operatorname{holim}_{s \in \Delta} P_n^{\mathbb{Q}}(X_s) \simeq \mathbb{R}\operatorname{map}_{\text{Fin}}^h(\operatorname{map}(-, M), P_n^{\mathbb{Q}})$$

Putting it all together,

$$\overline{\operatorname{emb}}(M, \mathbb{R}^n) \xrightarrow{\sim} \operatorname{holim} \Gamma \rightarrow \operatorname{holim}(\Gamma_{\mathbb{Q}}) \xrightarrow{\sim} \mathbb{R}\operatorname{map}_{\text{Fin}}^h(\operatorname{map}(-, M), P_n^{\mathbb{Q}})$$

The proof of proposition uses crucially

### **Theorem (Cirici-Horel)**

*Let  $F : \mathcal{C} \rightarrow \text{Spaces}_{\mathbb{Q}}$  be a functor such that  $F(c)$  has finite-dim. homology for every  $c \in \mathcal{C}$  and  $\exists u \in \mathbb{Q}^{\times}$  of infinite order,  $\alpha \in \mathbb{Q}$  and an endomorphism  $\sigma : F \Rightarrow F$  such that*

$$H_k(\sigma_c) : H_k(F(c)) \rightarrow H_k(F(c))$$

*is multiplication by  $u^{\alpha k}$ . Then  $F$  is formal.*

# Constructing the action

## Definition

The configuration category of a manifold  $U$  is the topological category whose objects are ordered configurations (of any cardinality) and morphisms are paths of such, where points are allowed to fuse (but collisions cannot be undone).

An embedding  $U \rightarrow V$  determines  $\text{con}(U) \rightarrow \text{con}(V)$  over  $\text{Fin}$ .

(B-Weiss) For  $n - m \geq 3$ , the following square is ho. cartesian

$$\begin{array}{ccc} \text{emb}(M, \mathbb{R}^n) & \longrightarrow & \mathbb{R}\text{map}_{\text{Fin}}(\text{con}(M), \text{con}(\mathbb{R}^n)) \\ \downarrow & & \downarrow \\ \text{holim}_{V \in \mathcal{O}_1(M)} \text{emb}(U, \mathbb{R}^n) & \longrightarrow & \text{holim}_{V \in \mathcal{O}_1(M)} \mathbb{R}\text{map}_{\text{Fin}}(\text{con}(V), \text{con}(\mathbb{R}^n)) \end{array}$$

where  $\mathcal{O}_1(M)$  is the poset of open subsets of  $M$  diffeo to  $\mathbb{R}^m$ .

## Definition

Let  $\Gamma'$  be the functor  $\mathcal{O} \rightarrow \text{Spaces}$  which to  $T \in \mathcal{O}$  assigns the homotopy fiber of

$$\mathbb{R}\text{map}_{\text{Fin}}(\text{con}(U(T)), \text{con}(\mathbb{R}^n)) \rightarrow \underset{V \in \mathcal{O}_1(U(T))}{\text{holim}} \mathbb{R}\text{map}_{\text{Fin}}(\text{con}(V), \text{con}(\mathbb{R}^n))$$

over the image of the fixed immersion  $f : M \rightarrow \mathbb{R}^n$ .

By the cartesianness, there is a weak equivalence of "cosimplicial" spaces  $\Gamma \rightarrow \Gamma'$ .

## Definition

Replace all instances of  $\text{con}(\mathbb{R}^n)$  by  $\text{con}(\mathbb{R}^n)_{\mathbb{Q}}$  to define  $\Gamma'_{\mathbb{Q}}$ .

## Lemma

*The canonical map  $\Gamma \rightarrow \Gamma'_{\mathbb{Q}}$  is a rationalization.*

## Galois symmetries on $\text{con}(\mathbb{R}^n)$

Theorem (Fresse, Horel)

The restriction  $GT_{\mathbb{Q}} \simeq \mathbb{R}\text{Aut}_{\text{Fin}}(\text{con}(\mathbb{R}^2)_{\mathbb{Q}}) \rightarrow \mathbb{Q}^{\times}$  is surjective.

(B-Horel) Can lift this to an action  $GT_{\mathbb{Q}} \rightarrow \mathbb{R}\text{Aut}_{\text{Fin}}(\text{con}(\mathbb{R}^n)_{\mathbb{Q}})$  whose restriction to  $\mathbb{Q}^{\times}$  is surjective, and for every  $u \in \mathbb{Q}^{\times}$ , a lifted automorphism  $u^{\sharp}$  of  $\text{con}(\mathbb{R}^n)_{\mathbb{Q}}$  is pure, i.e. it acts on the homology of object spaces  $H_k(\text{emb}(S, \mathbb{R}^n), \mathbb{Q})$  as multiplication by  $u^{k/(n-1)}$ . This follows from an additivity thm:

$$\text{con}(\mathbb{R}^2)_{\mathbb{Q}} \boxtimes \text{con}(\mathbb{R}^{n-2})_{\mathbb{Q}} \simeq \text{con}(\mathbb{R}^n)_{\mathbb{Q}}$$

$\rightsquigarrow$  get an action on the map

$$\mathbb{R}\text{map}_{\text{Fin}}(\text{con}(M), \text{con}(\mathbb{R}^n)_{\mathbb{Q}}) \rightarrow \underset{V \in \mathcal{O}_1(M)}{\text{holim}} \mathbb{R}\text{map}_{\text{Fin}}(\text{con}(V), \text{con}(\mathbb{R}^n)_{\mathbb{Q}})$$

$\rightsquigarrow$  Lifts to an action on  $\Gamma'_{\mathbb{Q}}$  if the image of the basepoint immersion  $f$  factors through

$$\operatorname{holim}_{V \in \mathcal{O}_1(M)} \mathbb{R}\text{map}_{\text{Fin}}(\text{con}(V), \text{con}(\mathbb{R}^{n-2})_{\mathbb{Q}})$$

For that it is enough that, for each  $x$ ,  $df_x : T_x M \rightarrow \mathbb{R}^n$  factors through  $\mathbb{R}^{n-2}$ , *rationally* (more below).

$\rightsquigarrow$  under this assumption on  $f$ ,  $u^\sharp$  lifts to an endomorphism of  $\Gamma'_{\mathbb{Q}}$  which is pure. Hence  $\Gamma_{\mathbb{Q}}$  is formal by Cirici-Horel.

Take the classifying map for the tangent bundle of  $M$

$$\tau : M \rightarrow BO(m)$$

By Smale-Hirsch, a choice of an immersion is a lift of  $\tau$  to  $Gr_{n,m}$ :

$$M \rightarrow BO(m) \times BO(n-m)$$

whose composition to  $BO(n)$  is null-homotopic. Now we can ask whether this extends to  $Gr_{n-2,m}$ , *rationally*. There are two cases, depending on the parity of  $n-m$ .

- ▶ if  $n-m = 2k-1$ , the dual Pontryagin class  $p_{k-1}^*$  is zero, and
- ▶ if  $n-m = 2k$ ,  $p_{k-1}^*$  is a square

## Torsion

Given a prime  $p$ , we can

- ▶ define a cosimplicial space  $\Gamma_p$  whose homotopy limit tries to approximate the  $p$ -completion of  $\overline{\text{emb}}(M, \mathbb{R}^n)$
- ▶ Galois action on the  $p$ -completion of  $\text{con}(\mathbb{R}^n)$  induces an action on  $\Gamma_p$
- ▶ have purity in a range, so get partial collapse at  $E_2$  in the (Bousfield-Kan) spectral sequence for  $\Gamma_p$ .
- ▶ extends results for 1-dim source, e.g.

$$\pi_i \text{emb}(S^1, \mathbb{R}^n) \otimes \mathbb{Z}_{(p)} \cong \bigoplus_{t-s=i} E_{-s,t}^2 \otimes \mathbb{Z}_{(p)}$$

for  $i < 2(p+n) - 4$ .

*Thanks for listening!*