

Binomial rings and homotopy theory

Geoffroy Horel (USPN)

Moduli and friends seminar, November 7th 2022

Question

How to distinguish the homotopy type of S^2 and S^3 ?

Question

How to distinguish the homotopy type of S^2 and S^3 ?

Answer : One can use homology. The homology of S^n and S^m with $m \neq n$ cannot be isomorphic.

Question

How to distinguish the homotopy type of S^2 and S^3 ?

Answer : One can use homology. The homology of S^n and S^m with $m \neq n$ cannot be isomorphic.

Question

How to distinguish the homotopy type of $S^2 \vee S^4$ and \mathbb{CP}^2 ?

Algebraic invariants of homotopy types

Question

How to distinguish the homotopy type of S^2 and S^3 ?

Answer : One can use homology. The homology of S^n and S^m with $m \neq n$ cannot be isomorphic.

Question

How to distinguish the homotopy type of $S^2 \vee S^4$ and \mathbb{CP}^2 ?

Answer : One can use cohomology with its cup product structure.
We have $H^*(\mathbb{CP}^2) \cong \mathbb{Z}[x]/x^3$ with $|x| = 2$ and
 $H^*(S^2 \vee S^4) \cong \mathbb{Z}[x]/x^2 \times \mathbb{Z}[y]/y^2$ with $|x| = 2, |y| = 4$.

Question

How to distinguish the homotopy type of $S^3 \vee S^5$ and $\Sigma \mathbb{CP}^2$?

Question

How to distinguish the homotopy type of $S^3 \vee S^5$ and $\Sigma \mathbb{CP}^2$?

The cohomology of both spaces are abstractly isomorphic

$$H^*(\Sigma \mathbb{CP}^2) = \mathbb{Z}1 \oplus \mathbb{Z}\Sigma x \oplus \mathbb{Z}\Sigma x^2$$

$$H^*(S^3 \vee S^5) = \mathbb{Z}1 \oplus \mathbb{Z}\Sigma x \oplus \mathbb{Z}\Sigma y$$

Question

How to distinguish the homotopy type of $S^3 \vee S^5$ and $\Sigma \mathbb{CP}^2$?

The cohomology of both spaces are abstractly isomorphic

$$H^*(\Sigma \mathbb{CP}^2) = \mathbb{Z}1 \oplus \mathbb{Z}\Sigma x \oplus \mathbb{Z}\Sigma x^2$$

$$H^*(S^3 \vee S^5) = \mathbb{Z}1 \oplus \mathbb{Z}\Sigma x \oplus \mathbb{Z}\Sigma y$$

Answer : One can use Steenrod operations. In $H^*(\mathbb{CP}^2; \mathbb{F}_2)$, there is a non-trivial Steenrod operation

$$Sq^2(x) = x^2$$

This remains true on $H^*(\Sigma \mathbb{CP}^2; \mathbb{F}_2)$:

$$Sq^2(\Sigma x) = \Sigma x^2$$

Question

How to distinguish the homotopy type of $S^3 \vee S^5$ and $\Sigma \mathbb{CP}^2$?

The cohomology of both spaces are abstractly isomorphic

$$H^*(\Sigma \mathbb{CP}^2) = \mathbb{Z}1 \oplus \mathbb{Z}\Sigma x \oplus \mathbb{Z}\Sigma x^2$$

$$H^*(S^3 \vee S^5) = \mathbb{Z}1 \oplus \mathbb{Z}\Sigma x \oplus \mathbb{Z}\Sigma y$$

Answer : One can use Steenrod operations. In $H^*(\mathbb{CP}^2; \mathbb{F}_2)$, there is a non-trivial Steenrod operation

$$Sq^2(x) = x^2$$

This remains true on $H^*(\Sigma \mathbb{CP}^2; \mathbb{F}_2)$:

$$Sq^2(\Sigma x) = \Sigma x^2$$

On the other hand, all Steenrod operations are trivial in the cohomology of $S^3 \vee S^5$.

Let

$$L_{m,n} = S^3 / \mu_m$$

where μ_m acts via $\zeta \cdot (z_1, z_2) = (\zeta z_1, \zeta^n z_2)$.

Let

$$L_{m,n} = S^3 / \mu_m$$

where μ_m acts via $\zeta \cdot (z_1, z_2) = (\zeta z_1, \zeta^n z_2)$. The two manifolds $L_{7,1}$ and $L_{7,2}$ are homotopy equivalent but not diffeomorphic.

Algebraic invariants of homotopy types

Let

$$L_{m,n} = S^3 / \mu_m$$

where μ_m acts via $\zeta \cdot (z_1, z_2) = (\zeta z_1, \zeta^n z_2)$. The two manifolds $L_{7,1}$ and $L_{7,2}$ are homotopy equivalent but not diffeomorphic.

Question

How to distinguish the homotopy type of $F_2(L_{7,1})$ and $F_2(L_{7,2})$?

Let

$$L_{m,n} = S^3 / \mu_m$$

where μ_m acts via $\zeta \cdot (z_1, z_2) = (\zeta z_1, \zeta^n z_2)$. The two manifolds $L_{7,1}$ and $L_{7,2}$ are homotopy equivalent but not diffeomorphic.

Question

How to distinguish the homotopy type of $F_2(L_{7,1})$ and $F_2(L_{7,2})$?

Answer : [Salvatore Longoni, 2004]. The universal cover $\tilde{F}_2(L_{7,1})$ and $\tilde{F}_2(L_{7,2})$ are not homotopy equivalent because there is a non-trivial triple Massey product in $H^5(\tilde{F}_2(L_{7,2}); \mathbb{Q})$ whereas all Massey products are trivial in $H^*(\tilde{F}_2(L_{7,1}); \mathbb{Q})$.

Massey products

The Massey products and Steenrod operations come from the fact that there is highly structured multiplication at the chain level. Namely $C^*(X; R)$ is a dg-algebra and an E_∞ -algebra.

Massey products

The Massey products and Steenrod operations come from the fact that there is highly structured multiplication at the chain level. Namely $C^*(X; R)$ is a dg-algebra and an E_∞ -algebra.

Construction

Given three cohomology classes $[x]$, $[y]$ and $[z]$ in a dg-algebra A such that $[x][y] = 0$ and $[y][z] = 0$, we may form their triple Massey product

$$\langle [x], [y], [z] \rangle = \{xb + az, db = yz \text{ and } da = xy\}$$

Steenrod squares

The cochain complex $C^* := C^*(X; \mathbb{F}_2)$ has a multiplication which is not strictly commutative. However, it has an E_∞ -structure.

Steenrod squares

The cochain complex $C^* := C^*(X; \mathbb{F}_2)$ has a multiplication which is not strictly commutative. However, it has an E_∞ -structure. There is a C_2 -equivariant multiplication map

$$\mu : W \otimes C^* \otimes C^* \rightarrow C^*$$

where $W \xrightarrow{\sim} \mathbb{F}_2$ is a $\mathbb{F}_2[C_2]$ projective resolution.

$$W \otimes C^* \xrightarrow{\Delta} W \otimes C^* \otimes C^* \rightarrow C^*$$

Steenrod squares

The cochain complex $C^* := C^*(X; \mathbb{F}_2)$ has a multiplication which is not strictly commutative. However, it has an E_∞ -structure. There is a C_2 -equivariant multiplication map

$$\mu : W \otimes C^* \otimes C^* \rightarrow C^*$$

where $W \xrightarrow{\sim} \mathbb{F}_2$ is a $\mathbb{F}_2[C_2]$ projective resolution.

$$W \otimes C^* \xrightarrow{\Delta} W \otimes C^* \otimes C^* \rightarrow C^*$$

This induces a map

$$W^{C_2} \otimes C^* = (W \otimes C^*)^{C_2} \rightarrow C^*$$

taking homology, we get

$$Sq : H^*(C_2; \mathbb{F}_2) \otimes H^*(X; \mathbb{F}_2) \rightarrow H^*(X; \mathbb{F}_2)$$

Steenrod squares

We have $H^*(C_2; \mathbb{F}_2) \cong \mathbb{F}_2[u]$ with $|u| = 1$.

Steenrod squares

We have $H^*(C_2; \mathbb{F}_2) \cong \mathbb{F}_2[u]$ with $|u| = 1$.

Definition

If $x \in H^k(X; \mathbb{F}_2)$, we write $Sq^n(x) = Sq(u^n \otimes x) \in H^{k+n}(X; \mathbb{F}_2)$

We have $H^*(C_2; \mathbb{F}_2) \cong \mathbb{F}_2[u]$ with $|u| = 1$.

Definition

If $x \in H^k(X; \mathbb{F}_2)$, we write $Sq^n(x) = Sq(u^n \otimes x) \in H^{k+n}(X; \mathbb{F}_2)$

In general, there are Σ_n -equivariant maps

$$W \otimes (C^*)^{\otimes n} \rightarrow C^*$$

satisfying compatibilities

Highly structured cochains

Let X be a topological space. We turn it into a simplicial set

$$[n] \mapsto \{f : \Delta^n \rightarrow X\}.$$

We still denote this simplicial set X .

Let X be a topological space. We turn it into a simplicial set

$$[n] \mapsto \{f : \Delta^n \rightarrow X\}.$$

We still denote this simplicial set X . We map to any commutative coefficient ring R and obtain a cosimplicial R -algebra R^X .

Let X be a topological space. We turn it into a simplicial set

$$[n] \mapsto \{f : \Delta^n \rightarrow X\}.$$

We still denote this simplicial set X . We map to any commutative coefficient ring R and obtain a cosimplicial R -algebra R^X . We can go one step further and apply the Dold-Kan construction

$$C^*(X; R) = N(R^X) = (R^X / \text{im}(s^i), \sum (-1)^i d^i)$$

Let X be a topological space. We turn it into a simplicial set

$$[n] \mapsto \{f : \Delta^n \rightarrow X\}.$$

We still denote this simplicial set X . We map to any commutative coefficient ring R and obtain a cosimplicial R -algebra R^X . We can go one step further and apply the Dold-Kan construction

$$C^*(X; R) = N(R^X) = (R^X / \text{im}(s^i), \sum (-1)^i d^i)$$

Problem : This is no longer commutative. But still associative.

Let X be a topological space. We turn it into a simplicial set

$$[n] \mapsto \{f : \Delta^n \rightarrow X\}.$$

We still denote this simplicial set X . We map to any commutative coefficient ring R and obtain a cosimplicial R -algebra R^X . We can go one step further and apply the Dold-Kan construction

$$C^*(X; R) = N(R^X) = (R^X / \text{im}(s^i), \sum (-1)^i d^i)$$

Problem : This is no longer commutative. But still associative.
However, this is E_∞ [Berger-Fresse]

Piecewise linear differential forms.

$$\Omega_{poly}^*(\Delta^n) := \mathbb{Q}[x_0, \dots, x_n, dx_0, \dots, x_n]/\left(\sum_{i=0}^n x_i = 1, \sum_{i=0}^n dx_i = 0\right)$$

with $|x_i| = 0$, $|dx_i| = 1$.

Rational homotopy theory

Piecewise linear differential forms.

$$\Omega_{poly}^*(\Delta^n) := \mathbb{Q}[x_0, \dots, x_n, dx_0, \dots, x_n]/\left(\sum_{i=0}^n x_i = 1, \sum_{i=0}^n dx_i = 0\right)$$

with $|x_i| = 0$, $|dx_i| = 1$. The differential is uniquely determined by $d(x_i) = dx_i$.

Piecewise linear differential forms.

$$\Omega_{poly}^*(\Delta^n) := \mathbb{Q}[x_0, \dots, x_n, dx_0, \dots, x_n]/\left(\sum_{i=0}^n x_i = 1, \sum_{i=0}^n dx_i = 0\right)$$

with $|x_i| = 0$, $|dx_i| = 1$. The differential is uniquely determined by $d(x_i) = dx_i$. The functor Ω_{poly}^* can be formally extended to simplicial complexes or even simplicial sets.

Piecewise linear differential forms.

$$\Omega_{poly}^*(\Delta^n) := \mathbb{Q}[x_0, \dots, x_n, dx_0, \dots, x_n] / \left(\sum_{i=0}^n x_i = 1, \sum_{i=0}^n dx_i = 0 \right)$$

with $|x_i| = 0$, $|dx_i| = 1$. The differential is uniquely determined by $d(x_i) = dx_i$. The functor Ω_{poly}^* can be formally extended to simplicial complexes or even simplicial sets.

Theorem

The functor Ω_{poly}^ is quasi-isomorphic to $C^*(-; \mathbb{Q})$. In particular the cohomology of $\Omega_{poly}^*(X)$ is naturally the cohomology of X with its cup-product structure.*

Theorem

The functor Ω_{poly}^ is a left adjoint functor*

$$\text{HoS} \rightarrow \text{HoCDGA}^{op}$$

The right adjoint is denoted $A \mapsto \langle A \rangle$.

Theorem

The functor Ω_{poly}^ is a left adjoint functor*

$$\text{HoS} \rightarrow \text{HoCDGA}^{op}$$

The right adjoint is denoted $A \mapsto \langle A \rangle$. The unit of this adjunction

$$X \rightarrow \langle \Omega_{poly}^*(X) \rangle$$

is rationalisation when X is of finite type.

Rational homotopy theory

Theorem

The functor Ω_{poly}^ is a left adjoint functor*

$$\text{HoS} \rightarrow \text{HoCDGA}^{op}$$

The right adjoint is denoted $A \mapsto \langle A \rangle$. The unit of this adjunction

$$X \rightarrow \langle \Omega_{poly}^*(X) \rangle$$

is rationalisation when X is of finite type.

Definition

- ① *finite type : homology is degreewise finitely generated.*
- ② *Nilpotent : connected, fundamental group is nilpotent and acts nilpotently on higher homotopy groups.*

Definition

For a nilpotent space X , the rationalisation is the initial (up to homotopy) space $X_{\mathbb{Q}}$ which is connected, whose homotopy groups are uniquely divisible and with a map $X \rightarrow X_{\mathbb{Q}}$.

Definition

For a nilpotent space X , the rationalisation is the initial (up to homotopy) space $X_{\mathbb{Q}}$ which is connected, whose homotopy groups are uniquely divisible and with a map $X \rightarrow X_{\mathbb{Q}}$.

At the level of homotopy groups the map

$$X \rightarrow X_{\mathbb{Q}}$$

is

$$\pi_*(X) \rightarrow \pi_*(X) \otimes \mathbb{Q}$$

Rational homotopy theory

Definition

For a nilpotent space X , the rationalisation is the initial (up to homotopy) space $X_{\mathbb{Q}}$ which is connected, whose homotopy groups are uniquely divisible and with a map $X \rightarrow X_{\mathbb{Q}}$.

At the level of homotopy groups the map

$$X \rightarrow X_{\mathbb{Q}}$$

is

$$\pi_*(X) \rightarrow \pi_*(X) \otimes \mathbb{Q}$$

More generally, if X is not nilpotent (but still finite type). We have

$$\pi_1(X_{\mathbb{Q}}) \cong \pi_1(X)_{\mathbb{Q}}^{\wedge}$$

(Malcev completion)

Example

Write $F_n(\mathbb{R}^2)$, the space of ordered configuration of n points in \mathbb{R}^2 .

Example

Write $F_n(\mathbb{R}^2)$, the space of ordered configuration of n points in \mathbb{R}^2 . Then $F_n(\mathbb{R}^2) = K(PB_n, 1)$.

Example

Write $F_n(\mathbb{R}^2)$, the space of ordered configuration of n points in \mathbb{R}^2 . Then $F_n(\mathbb{R}^2) = K(PB_n, 1)$. And $F_n(\mathbb{R}^2)_{\mathbb{Q}} = K((PB_n)_{\mathbb{Q}}^{\wedge}, 1)$.

Examples

Example

Write $F_n(\mathbb{R}^2)$, the space of ordered configuration of n points in \mathbb{R}^2 . Then $F_n(\mathbb{R}^2) = K(PB_n, 1)$. And $F_n(\mathbb{R}^2)_{\mathbb{Q}} = K((PB_n)_{\mathbb{Q}}^{\wedge}, 1)$. We have

$$(PB_n)_{\mathbb{Q}}^{\wedge} = \exp(\mathfrak{pb}_n)$$

where \mathfrak{pb}_n is the Drinfeld-Konho Lie algebra.

Examples

Example

Write $F_n(\mathbb{R}^2)$, the space of ordered configuration of n points in \mathbb{R}^2 . Then $F_n(\mathbb{R}^2) = K(PB_n, 1)$. And $F_n(\mathbb{R}^2)_{\mathbb{Q}} = K((PB_n)_{\mathbb{Q}}^{\wedge}, 1)$. We have

$$(PB_n)_{\mathbb{Q}}^{\wedge} = \exp(\mathfrak{pb}_n)$$

where \mathfrak{pb}_n is the Drinfeld-Konho Lie algebra.

Example

Take $X = K(GL_{\infty}(\mathbb{Z}), 1)$. Then $X_{\mathbb{Q}}$ has higher homotopy groups. They are the rational higher K-groups of \mathbb{Z} (non trivial, computed by Borel).

Examples

Example

Write $F_n(\mathbb{R}^2)$, the space of ordered configuration of n points in \mathbb{R}^2 . Then $F_n(\mathbb{R}^2) = K(PB_n, 1)$. And $F_n(\mathbb{R}^2)_{\mathbb{Q}} = K((PB_n)_{\mathbb{Q}}^{\wedge}, 1)$. We have

$$(PB_n)_{\mathbb{Q}}^{\wedge} = \exp(\mathfrak{pb}_n)$$

where \mathfrak{pb}_n is the Drinfeld-Konho Lie algebra.

Example

Take $X = K(GL_{\infty}(\mathbb{Z}), 1)$. Then $X_{\mathbb{Q}}$ has higher homotopy groups. They are the rational higher K-groups of \mathbb{Z} (non trivial, computed by Borel).

Theorem (Mandell, 2006)

Let $X \mapsto C^*(X)$ the singular cochain functor.

$$C^*(-) : \text{HoS} \rightarrow \text{HoAlg}_{E_\infty}^{op}$$

Theorem (Mandell, 2006)

Let $X \mapsto C^*(X)$ the singular cochain functor.

$$C^*(-) : \text{HoS} \rightarrow \text{HoAlg}_{E_\infty}^{\text{op}}$$

This functor is a left adjoint. The right adjoint is denoted $A \mapsto \langle A \rangle$. When restricted to simplicial sets X that are nilpotent and of finite type, this functor is faithful.

Theorem (Mandell, 2006)

Let $X \mapsto C^*(X)$ the singular cochain functor.

$$C^*(-) : \text{HoS} \rightarrow \text{HoAlg}_{E_\infty}^{\text{op}}$$

This functor is a left adjoint. The right adjoint is denoted $A \mapsto \langle A \rangle$. When restricted to simplicial sets X that are nilpotent and of finite type, this functor is faithful. Two simplicial sets that are nilpotent and of finite type X and Y are weakly equivalent if and only if $C^*(X)$ and $C^*(Y)$ are weakly equivalent as E_∞ -differential graded algebras.

Integral homotopy theory

Theorem (Mandell, 2006)

Let $X \mapsto C^*(X)$ the singular cochain functor.

$$C^*(-) : \text{HoS} \rightarrow \text{HoAlg}_{E_\infty}^{\text{op}}$$

This functor is a left adjoint. The right adjoint is denoted $A \mapsto \langle A \rangle$. When restricted to simplicial sets X that are nilpotent and of finite type, this functor is faithful. Two simplicial sets that are nilpotent and of finite type X and Y are weakly equivalent if and only if $C^*(X)$ and $C^*(Y)$ are weakly equivalent as E_∞ -differential graded algebras.

Theorem (Toën, 2020)

Same theorem for $X \mapsto \mathbb{Z}^X$.

$$\mathbb{Z}^{(-)} : \text{HoS} \rightarrow \text{Ho}(\text{cRing})^{\text{op}}$$

We have $[S^2, S^2] \cong \mathbb{Z}$.

We have $[S^2, S^2] \cong \mathbb{Z}$. But,

$$[C^*(S^2), C^*(S^2)] \cong [\mathbb{Z}^{S^2}, \mathbb{Z}^{S^2}] \cong \mathbb{Z} \oplus \prod_p \mathbb{Z}_p$$

We have $[S^2, S^2] \cong \mathbb{Z}$. But,

$$[C^*(S^2), C^*(S^2)] \cong [\mathbb{Z}^{S^2}, \mathbb{Z}^{S^2}] \cong \mathbb{Z} \oplus \prod_p \mathbb{Z}_p$$

Fullness fails very badly !

Binomial ring

Definition

A binomial ring is a torsion-free commutative ring R , such that, for all $a \in R$ and $n \in \mathbb{N}$,

$$n! \mid \prod_{i=0}^{n-1} (a - i)$$

Binomial ring

Definition

A binomial ring is a torsion-free commutative ring R , such that, for all $a \in R$ and $n \in \mathbb{N}$,

$$n! \mid \prod_{i=0}^{n-1} (a - i)$$

We write

$$\binom{a}{n} = \frac{\prod_{i=0}^{n-1} (a - i)}{n!}.$$

Binomial ring

Definition

A binomial ring is a torsion-free commutative ring R , such that, for all $a \in R$ and $n \in \mathbb{N}$,

$$n! \mid \prod_{i=0}^{n-1} (a - i)$$

We write

$$\binom{a}{n} = \frac{\prod_{i=0}^{n-1} (a - i)}{n!}.$$

Definition

A binomial ring is a torsion free commutative ring R such that, for all $a \in R$, p prime,

$$p \mid a^p - a$$

Example

- 1 Any subring of \mathbb{Q} .
- 2 Any \mathbb{Q} -algebra.

Example

- 1 Any subring of \mathbb{Q} .
- 2 Any \mathbb{Q} -algebra.
- 3 The ring of p -adic integers \mathbb{Z}_p .

Example

- 1 Any subring of \mathbb{Q} .
- 2 Any \mathbb{Q} -algebra.
- 3 The ring of p -adic integers \mathbb{Z}_p .
- 4 The ring of numerical function

$$\text{Num}[x_1, \dots, x_n] = \{f \in \mathbb{Q}[x_1, \dots, x_n], f(\mathbb{Z}^n) \subset \mathbb{Z}\}$$

Binomial ring

Example

- 1 Any subring of \mathbb{Q} .
- 2 Any \mathbb{Q} -algebra.
- 3 The ring of p -adic integers \mathbb{Z}_p .
- 4 The ring of numerical function

$$\text{Num}[x_1, \dots, x_n] = \{f \in \mathbb{Q}[x_1, \dots, x_n], f(\mathbb{Z}^n) \subset \mathbb{Z}\}$$

- 5 Any product or tensor product of binomial rings.

Binomial ring

Example

- 1 Any subring of \mathbb{Q} .
- 2 Any \mathbb{Q} -algebra.
- 3 The ring of p -adic integers \mathbb{Z}_p .
- 4 The ring of numerical function

$$\text{Num}[x_1, \dots, x_n] = \{f \in \mathbb{Q}[x_1, \dots, x_n], f(\mathbb{Z}^n) \subset \mathbb{Z}\}$$

- 5 Any product or tensor product of binomial rings.
- 6 Any limit or colimit of binomial ring.

Binomial ring

Example

- 1 Any subring of \mathbb{Q} .
- 2 Any \mathbb{Q} -algebra.
- 3 The ring of p -adic integers \mathbb{Z}_p .
- 4 The ring of numerical function

$$\text{Num}[x_1, \dots, x_n] = \{f \in \mathbb{Q}[x_1, \dots, x_n], f(\mathbb{Z}^n) \subset \mathbb{Z}\}$$

- 5 Any product or tensor product of binomial rings.
- 6 Any limit or colimit of binomial ring.

Proposition

The ring $\text{Num}[x_1, \dots, x_n]$ is the free binomial ring on n variables.

$$\text{Hom}_{\text{BRing}}(\text{Num}[x_1, \dots, x_n], R) = R^n$$

Cosimplicial binomial ring

Observation : The cosimplicial commutative ring \mathbb{Z}^X is a cosimplicial binomial ring.

Cosimplicial binomial ring

Observation : The cosimplicial commutative ring \mathbb{Z}^X is a cosimplicial binomial ring.

Theorem (H.)

*The functor $X \mapsto \mathbb{Z}^X$ from HoS to $\text{Ho}(\text{cBRing})^{\text{op}}$ is a left adjoint.
The right adjoint is denoted $A \mapsto \langle A \rangle$.*

Cosimplicial binomial ring

Observation : The cosimplicial commutative ring \mathbb{Z}^X is a cosimplicial binomial ring.

Theorem (H.)

*The functor $X \mapsto \mathbb{Z}^X$ from HoS to $\text{Ho}(\text{cBRing})^{\text{op}}$ is a left adjoint.
The right adjoint is denoted $A \mapsto \langle A \rangle$.*

- *The unit of this adjunction $X \rightarrow \langle \mathbb{Z}^X \rangle$ is a weak equivalence for X nilpotent of finite type.*

Cosimplicial binomial ring

Observation : The cosimplicial commutative ring \mathbb{Z}^X is a cosimplicial binomial ring.

Theorem (H.)

*The functor $X \mapsto \mathbb{Z}^X$ from HoS to $\text{Ho}(\text{cBRing})^{\text{op}}$ is a left adjoint.
The right adjoint is denoted $A \mapsto \langle A \rangle$.*

- *The unit of this adjunction $X \rightarrow \langle \mathbb{Z}^X \rangle$ is a weak equivalence for X nilpotent of finite type.*
- *The functor $\mathbb{Z}^{(-)}$ is fully faithful when restricted to nilpotent finite type spaces.*

Cosimplicial binomial ring

Observation : The cosimplicial commutative ring \mathbb{Z}^X is a cosimplicial binomial ring.

Theorem (H.)

*The functor $X \mapsto \mathbb{Z}^X$ from HoS to $\text{Ho}(\text{cBRing})^{\text{op}}$ is a left adjoint.
The right adjoint is denoted $A \mapsto \langle A \rangle$.*

- *The unit of this adjunction $X \rightarrow \langle \mathbb{Z}^X \rangle$ is a weak equivalence for X nilpotent of finite type.*
- *The functor $\mathbb{Z}^{(-)}$ is fully faithful when restricted to nilpotent finite type spaces.*

Remark

The forgetful functor

$$\text{Ho}(\text{cBRing}) \rightarrow \text{Ho}(\text{cRing})$$

is not fully faithful.

Remark about the hypothesis

Remark

The nilpotent hypothesis cannot be hoped to be removed.

Remark about the hypothesis

Remark

*The nilpotent hypothesis cannot be hoped to be removed.
Take X to be the Poincaré sphere minus a point.*

Remark

The nilpotent hypothesis cannot be hoped to be removed.

Take X to be the Poincaré sphere minus a point.

Then the map $X \rightarrow pt$ is an integral homology isomorphism but X is not contractible.

Remark about the hypothesis

Remark

The nilpotent hypothesis cannot be hoped to be removed.

Take X to be the Poincaré sphere minus a point.

Then the map $X \rightarrow pt$ is an integral homology isomorphism but X is not contractible.

Remark

The finite type hypothesis comes from the fact that we work with cochains instead of chains.

Remark about the hypothesis

Remark

The nilpotent hypothesis cannot be hoped to be removed.

Take X to be the Poincaré sphere minus a point.

Then the map $X \rightarrow pt$ is an integral homology isomorphism but X is not contractible.

Remark

The finite type hypothesis comes from the fact that we work with cochains instead of chains.

If we could define a chain functor with values in simplicial “binomial corings”, there would be hope of being able to remove this hypothesis.

Sketch of proof

Any nilpotent space X is the limit of a tower

$$X \rightarrow \dots X_n \rightarrow X_{n-1} \rightarrow \dots \rightarrow X_0$$

where the map $X_n \rightarrow X_{n-1}$ is a principal fibration with fiber $K(A_n, i_n)$ with A_n a finitely generated abelian group and with $i_n \geq 1$ and the sequence i_n grows to $+\infty$.

Sketch of proof

Any nilpotent space X is the limit of a tower

$$X \rightarrow \dots X_n \rightarrow X_{n-1} \rightarrow \dots \rightarrow X_0$$

where the map $X_n \rightarrow X_{n-1}$ is a principal fibration with fiber $K(A_n, i_n)$ with A_n a finitely generated abelian group and with $i_n \geq 1$ and the sequence i_n grows to $+\infty$.

We can reduce to proving that

$$\mathbb{Z}^{K(\mathbb{Z}, n)} \simeq \text{Sym}^{bin}(DK^{-1}\mathbb{Z}[n])$$

Sketch of proof

Any nilpotent space X is the limit of a tower

$$X \rightarrow \dots X_n \rightarrow X_{n-1} \rightarrow \dots \rightarrow X_0$$

where the map $X_n \rightarrow X_{n-1}$ is a principal fibration with fiber $K(A_n, i_n)$ with A_n a finitely generated abelian group and with $i_n \geq 1$ and the sequence i_n grows to $+\infty$.

We can reduce to proving that

$$\mathbb{Z}^{K(\mathbb{Z}, n)} \simeq \text{Sym}^{\text{bin}}(DK^{-1}\mathbb{Z}[n])$$

We can further reduce to proving that

$$\mathbb{Z}^{K(\mathbb{Z}, 1)} \simeq \text{Sym}^{\text{bin}}(DK^{-1}\mathbb{Z}[1])$$

Sketch of proof

Indeed the right adjoint of $X \mapsto \mathbb{Z}^X$ is

$$A \mapsto \langle A \rangle = \text{map}_{\text{cBRing}}(A, \mathbb{Z})$$

Sketch of proof

Indeed the right adjoint of $X \mapsto \mathbb{Z}^X$ is

$$A \mapsto \langle A \rangle = \text{map}_{\text{cBRing}}(A, \mathbb{Z})$$

So we have

$$\begin{aligned} \langle \text{Sym}^{\text{bin}}(DK^{-1}\mathbb{Z}[n]) \rangle &\simeq \mathbb{R}\text{map}_{\text{cBRing}}(A, \mathbb{Z}) \simeq \\ \mathbb{R}\text{map}_{\text{cAb}}(DK^{-1}\mathbb{Z}[n], \mathbb{Z}) &\simeq \mathbb{R}\text{map}_{\text{Ch}^*(\mathbb{Z})}(DK^{-1}\mathbb{Z}[n], \mathbb{Z}) \simeq K(\mathbb{Z}, n) \end{aligned}$$

Sketch of proof

We start from the simplicial abelian group $B_{\bullet}\mathbb{Z}$

$$[n] \mapsto \mathbb{Z}^n$$

Sketch of proof

We start from the simplicial abelian group $B_{\bullet}\mathbb{Z}$

$$[n] \mapsto \mathbb{Z}^n$$

with face maps $d_i : \mathbb{Z}^n \rightarrow \mathbb{Z}^{n-1}$ given by

$$d_0(a_1, \dots, a_n) = (a_2, \dots, a_n)$$

$$d_n(a_1, \dots, a_n) = (a_2, \dots, a_{n-1})$$

$$d_i(a_1, \dots, a_n) = (a_1, \dots, a_i + a_{i+1}, \dots, a_n)$$

Sketch of proof

We start from the simplicial abelian group $B_\bullet \mathbb{Z}$

$$[n] \mapsto \mathbb{Z}^n$$

with face maps $d_i : \mathbb{Z}^n \rightarrow \mathbb{Z}^{n-1}$ given by

$$d_0(a_1, \dots, a_n) = (a_2, \dots, a_n)$$

$$d_n(a_1, \dots, a_n) = (a_2, \dots, a_{n-1})$$

$$d_i(a_1, \dots, a_n) = (a_1, \dots, a_i + a_{i+1}, \dots, a_n)$$

We dualize to get $\mathbb{Z}[1]$

$$\mathbb{Z}[1]^n = \mathbb{Z}^n = \text{Hom}(\mathbb{Z}^n, \mathbb{Z})$$

with inner face maps given by the diagonals $\mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ and outer face maps given by the zero map $0 \rightarrow \mathbb{Z}$.

Sketch of proof

Then

$$\mathrm{Sym}^{bin}(DK^{-1}\mathbb{Z}[1])^n = \mathrm{Num}[x]^{\otimes n} = \mathrm{Num}[x_1, \dots, x_n]$$

Sketch of proof

Then

$$\mathrm{Sym}^{bin}(DK^{-1}\mathbb{Z}[1])^n = \mathrm{Num}[x]^{\otimes n} = \mathrm{Num}[x_1, \dots, x_n]$$

The outer coface maps are given by the unit $\mathbb{Z} \rightarrow \mathrm{Num}[x]$. The inner coface maps are induced by the diagonal map

Sketch of proof

Then

$$\mathrm{Sym}^{bin}(DK^{-1}\mathbb{Z}[1])^n = \mathrm{Num}[x]^{\otimes n} = \mathrm{Num}[x_1, \dots, x_n]$$

The outer coface maps are given by the unit $\mathbb{Z} \rightarrow \mathrm{Num}[x]$. The inner coface maps are induced by the diagonal map

$$\Delta : \mathrm{Num}[x] \rightarrow \mathrm{Num}[x, y]$$

given by $\Delta(f)(x, y) = f(x + y)$.

This can be identified with the cobar construction of $\mathrm{Num}[x]$.

Sketch of proof

Vandermonde's identity :

$$\binom{x+y}{n} = \sum_{p+q=n} \binom{x}{p} \binom{y}{q}$$

Sketch of proof

Vandermonde's identity :

$$\binom{x+y}{n} = \sum_{p+q=n} \binom{x}{p} \binom{y}{q}$$

This mean that $\text{Num}[x]^\vee$ is isomorphic to $\mathbb{Z}[x]$.

Sketch of proof

Vandermonde's identity :

$$\binom{x+y}{n} = \sum_{p+q=n} \binom{x}{p} \binom{y}{q}$$

This mean that $\text{Num}[x]^\vee$ is isomorphic to $\mathbb{Z}[x]$. The cobar construction of $\text{Num}[x]$ is the dual of the bar construction of $\mathbb{Z}[x]$.

Sketch of proof

Vandermonde's identity :

$$\binom{x+y}{n} = \sum_{p+q=n} \binom{x}{p} \binom{y}{q}$$

This mean that $\text{Num}[x]^\vee$ is isomorphic to $\mathbb{Z}[x]$. The cobar construction of $\text{Num}[x]$ is the dual of the bar construction of $\mathbb{Z}[x]$. We can compute

$$H_*(B(\mathbb{Z}[x])) \cong \text{Tor}_{\mathbb{Z}[x]}^*(\mathbb{Z}, \mathbb{Z})$$

Sketch of proof

Vandermonde's identity :

$$\binom{x+y}{n} = \sum_{p+q=n} \binom{x}{p} \binom{y}{q}$$

This mean that $\text{Num}[x]^\vee$ is isomorphic to $\mathbb{Z}[x]$. The cobar construction of $\text{Num}[x]$ is the dual of the bar construction of $\mathbb{Z}[x]$. We can compute

$$H_*(B(\mathbb{Z}[x])) \cong \text{Tor}_{\mathbb{Z}[x]}^*(\mathbb{Z}, \mathbb{Z})$$

This homology is free of rank 1 in homological degree 0 and 1 and is zero otherwise.

Sketch of proof

Vandermonde's identity :

$$\binom{x+y}{n} = \sum_{p+q=n} \binom{x}{p} \binom{y}{q}$$

This mean that $\text{Num}[x]^\vee$ is isomorphic to $\mathbb{Z}[x]$. The cobar construction of $\text{Num}[x]$ is the dual of the bar construction of $\mathbb{Z}[x]$. We can compute

$$H_*(B(\mathbb{Z}[x])) \cong \text{Tor}_{\mathbb{Z}[x]}^*(\mathbb{Z}, \mathbb{Z})$$

This homology is free of rank 1 in homological degree 0 and 1 and is zero otherwise.

So the cobar construction of $\text{Num}[x]$ has the same cohomology as \mathbb{Z}^{S^1} .