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Algebraic invariants of homotopy types

How to distinguish the homotopy type of S?> and S3 ?
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Algebraic invariants of homotopy types

How to distinguish the homotopy type of S?> and S3 ?

Answer : One can use homology. The homology of S” and S™ with
m # n cannot be isomorphic.
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Algebraic invariants of homotopy types

How to distinguish the homotopy type of S?> and S3 ?

Answer : One can use homology. The homology of S” and S™ with
m # n cannot be isomorphic.

How to distinguish the homotopy type of S \/ §* and CP? ?
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Algebraic invariants of homotopy types

How to distinguish the homotopy type of S?> and S3 ?

Answer : One can use homology. The homology of S” and S™ with
m # n cannot be isomorphic.

How to distinguish the homotopy type of S \/ §* and CP? ?

Answer : One can use cohomology with its cup product structure.
We have H*(CP?) = Z[x]/x3 with |x| = 2 and
H*(S?% v S*) =2 Z[x]/x? x Z[y]/y? with |x| = 2,|y| = 4.
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Algebraic invariants of homotopy types

How to distinguish the homotopy type of S3\/ S® and ¥CP? ?
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Algebraic invariants of homotopy types

How to distinguish the homotopy type of S3\/ S® and ¥CP? ?

The cohomology of both spaces are abstrctly isomorphic

H*(ZCP?) = Z1 ® ZIx ® ZXx?
H*(S3Vv S°) =Z1® ZIx © 7Ly
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Algebraic invariants of homotopy types

How to distinguish the homotopy type of S3\/ S® and ¥CP? ?

The cohomology of both spaces are abstrctly isomorphic

H*(ZCP?) = Z1 ® ZIx ® ZXx?
H*(S3Vv S°) =Z1® ZIx © 7Ly

Answer : One can use Steenrod operations. In H*(CP?;F5), there
is a non-trivial Steenrod operation

S¢°(x) = x°
This remains true on H*(ZCP?; ) :
Sq?(¥x) = Xx?
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Algebraic invariants of homotopy types

How to distinguish the homotopy type of S3\/ S® and ¥CP? ?

The cohomology of both spaces are abstrctly isomorphic

H*(ZCP?) = Z1 ® ZIx ® ZXx?
H*(S3Vv S°) =Z1® ZIx © 7Ly

Answer : One can use Steenrod operations. In H*(CP?;F5), there
is a non-trivial Steenrod operation

S¢°(x) = x°
This remains true on H*(ZCP?; ) :
Sq?(¥x) = Xx?

On the other hand, all Steenrod operations are trivial in the
cohomology of S3 Vv S°.
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Algebraic invariants of homotopy types

Let
Lm,n = 53/Mm

where i, acts via (.(z1,z2) = (¢z1,("22).
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Algebraic invariants of homotopy types

Let
Lm,n = 53/Mm

where fi acts via (.(z1, 22) = ((z1,("22). The two manifolds L7
and L7 are homotopy equivalento but not diffeomorphic.
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Algebraic invariants of homotopy types

Let
Lm,n = 53/Mm

where fi acts via (.(z1, 22) = ((z1,("22). The two manifolds L7
and L7 are homotopy equivalento but not diffeomorphic.

How to distinguish the homotopy type of F>(L71) and F»(L72) 7
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Algebraic invariants of homotopy types

Let
Lm,n = 53/Mm

where fi acts via (.(z1, 22) = ((z1,("22). The two manifolds L7
and L7 are homotopy equivalento but not diffeomorphic.

How to distinguish the homotopy type of F>(L71) and F»(L72) 7

Answer : [Salvatore Longoni, 2004]. The universal cover I-:2(L7,1)
and ﬁZ(L772) are not homotopy equivalent because there is a
non-trivial triple Massey product in H>(F»(L72); Q) whereas all
Massey products are trivial in H*(F2(L7.1); Q).
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Massey products

The Massey products and Steenrod operations come form the fact
that there is highly structured multiplication at the chain level.
Namely C*(X; R) is a dg-algebra and an E..-algebra.
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Massey products

The Massey products and Steenrod operations come form the fact
that there is highly structured multiplication at the chain level.
Namely C*(X; R) is a dg-algebra and an E..-algebra.

Given three cohomology classes [x], |y] and [z] in a dg-algebra A
such that [x][y] = 0 and [y][z] = O, we may form their triple
Massey product

([x],[v], [2]) = {xb+ az,db = yz and da = xy}
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Steenrod squares

The cochain complex C* := C*(X;F2) has a multiplication which
is not strictly commutative. However, it has an E..-structure.
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Steenrod squares

The cochain complex C* := C*(X;F2) has a multiplication which
is not strictly commutative. However, it has an E..-structure.
There is a Cy-equivariant multiplication map

w:WeC'eC"— C*
where W = F is a F2[C,] projective resolution.

WeoC 2 wWe e C— C*
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Steenrod squares

The cochain complex C* := C*(X;F2) has a multiplication which
is not strictly commutative. However, it has an E..-structure.
There is a Cy-equivariant multiplication map

wWeCeC — C*
where W = F is a F2[C,] projective resolution.
We S Wec oc - C*
This induces a map
WG @ C* = (W CH% - C*
taking homology, we get

Sq: H*(Cy; Fa) @ H*(X; Fa) — H*(X;TF2)
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Steenrod squares

We have H*(Cy; Fa) = Folu] with |u| = 1.
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Steenrod squares

We have H*(Cy; Fa) = Folu] with |u| = 1.

Definition

If x € HK(X;Fy), we write Sq"(x) = Sq(u" ® x) € HK(X; F,)
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Steenrod squares

We have H*(Cy; Fa) = Folu] with |u| = 1.

Definition

If x € HK(X;Fy), we write Sq"(x) = Sq(u" ® x) € HK(X; F,)

In general, there are ¥ ,-equivariant maps
W (CH®" — C*

satisfying compatibilities
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Highly structured cochains

Let X be a topological space. We turn it into a simplicial set
[n] — {f: A" = X}.

We still denote this simplicial set X.
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Highly structured cochains

Let X be a topological space. We turn it into a simplicial set
[n] — {f: A" = X}.

We still denote this simplicial set X. We map to any commutative
coefficient ring R and obtain a cosimplicial R-algebra RX.
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Highly structured cochains

Let X be a topological space. We turn it into a simplicial set
[n] — {f: A" = X}.

We still denote this simplicial set X. We map to any commutative
coefficient ring R and obtain a cosimplicial R-algebra RX. We can
go one step further and apply the Dold-Kan construction

C*(X; R) = N(RX) = (R*/im(s'), > "(~1)'d")
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Highly structured cochains

Let X be a topological space. We turn it into a simplicial set
[n] — {f: A" = X}.

We still denote this simplicial set X. We map to any commutative
coefficient ring R and obtain a cosimplicial R-algebra RX. We can
go one step further and apply the Dold-Kan construction

C*(X; R) = N(RX) = (RX/im(s), > (~1)'d")

Problem : This is no longer commutative. But still associative.
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Highly structured cochains

Let X be a topological space. We turn it into a simplicial set
[n] — {f: A" = X}.

We still denote this simplicial set X. We map to any commutative
coefficient ring R and obtain a cosimplicial R-algebra RX. We can
go one step further and apply the Dold-Kan construction

C*(X; R) = N(RX) = (R*/im(s'), > "(~1)'d")

Problem : This is no longer commutative. But still associative.
However, this is E, [Berger-Fresse]
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Rational homotopy theory

Piecewise linear differential forms.
roy (A7) == Qlxo, ..., Xn, dx0, -, X0/ xi =1, dx; =0)
i=0 i=0

with |x;| =0, |dx;| = 1.
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Rational homotopy theory

Piecewise linear differential forms.
roy (A7) == Qlxo, ..., Xn, dx0, -, X0/ xi =1, dx; =0)
i=0 i=0

with |x;| =0, |dx;| = 1. The differential is uniquely determined by
d(X,') = dX,'.
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Rational homotopy theory

Piecewise linear differential forms.
roy (A7) == Qlxo, ..., Xn, dx0, -, X0/ xi =1, dx; =0)
i=0 i=0

with |x;| =0, |dx;| = 1. The differential is uniquely determined by
d(xj) = dx;. The functor Q7 can be formally extended to
simplicial complexes or even simplicial sets.
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Rational homotopy theory

Piecewise linear differential forms.
roy (A7) == Qlxo, ..., Xn, dx0, -, X0/ xi =1, dx; =0)
i=0 i=0

with |x;| =0, |dx;| = 1. The differential is uniquely determined by
d(xj) = dx;. The functor Q7 can be formally extended to
simplicial complexes or even simplicial sets.

The functor Qo i quasi-isomorphic to C*(—; Q). In particular

*

the cohomology of Q2 po,y(X ) is naturally the cohomology of X with
its cup-product structure.
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Rational homotopy theory

The functor QL s a left adjoint functor

HoS — HoCDGA®°P

The right adjoint is denoted A — (A).
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Rational homotopy theory

The functor QL s a left adjoint functor

HoS — HoCDGA®P
The right adjoint is denoted A +— (A). The unit of this adjunction

X = X))

:;oly(

is rationalisation when X is of finite type.
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Rational homotopy theory

Theorem

The functor QL s a left adjoint functor

HoS — HoCDGA®P
The right adjoint is denoted A — (A). The unit of this adjunction

X = X))

:;oly(

is rationalisation when X is of finite type.

Definition

@ finite type : homology is degreewise finitely generated.

@ Nilpotent : connected, fundamental group is nilpotent and
acts nilpotently on higher homotopy groups.
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Rational homotopy theory

Definition

For a nilpotent space X, the rationalisation is the initial (up to
homotopy) space Xq which is connected, whose homotopy groups
are uniquely divisible and with a map X — Xp.
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Rational homotopy theory

Definition

For a nilpotent space X, the rationalisation is the initial (up to
homotopy) space Xq which is connected, whose homotopy groups
are uniquely divisible and with a map X — Xp.

At the level of homotopy groups the map

X—)X@

T(X) = m(X) @ Q
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Rational homotopy theory

Definition

For a nilpotent space X, the rationalisation is the initial (up to
homotopy) space Xq which is connected, whose homotopy groups
are uniquely divisible and with a map X — Xp.

At the level of homotopy groups the map

X—)X@

T(X) = m(X) @ Q
More generally, if X is not nilpotent (but still finite type). We have
m(Xg) = m(X)g
(Malcev completion)
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ETNTIES

Write F,,(R?), the space of ordered configuration of n points in R?.
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ETNTIES

Write F,,(R?), the space of ordered configuration of n points in R?.
Then F,(R?) = K(PB,,1).
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ETNTIES

Write F,,(R?), the space of ordered configuration of n points in R?.
Then Fp(R?) = K(PBy,1). And Fp(R?)q = K((PB,)g;1)-
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ETNTIES

SEE

Write F,,(R?), the space of ordered configuration of n points in R?.
Then Fa(R2) = K(PB,, 1). And Fo(R2)g = K((PB,)},1). We
have

(PBn)g = exp(pb,)

where pb,, is the Drinfeld-Konho Lie algebra.

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Write F,,(R?), the space of ordered configuration of n points in R?.
Then Fa(R2) = K(PB,, 1). And Fo(R2)g = K((PB,)},1). We
have

(PBn)g = exp(pb,)
where pb,, is the Drinfeld-Konho Lie algebra.

Take X = K(GLx(Z),1). Then Xy has higher homotopy groups.

They are the rational higher K-groups of Z (non trivial, computed
by Borel).
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Write F,,(R?), the space of ordered configuration of n points in R?.
Then Fa(R2) = K(PB,, 1). And Fo(R2)g = K((PB,)},1). We
have

(PBn)g = exp(pb,)
where pb,, is the Drinfeld-Konho Lie algebra.

Take X = K(GLx(Z),1). Then Xy has higher homotopy groups.

They are the rational higher K-groups of Z (non trivial, computed
by Borel).
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Integral homotopy theory

Theorem (Mandell, 2006)
Let X — C*(X) the singular cochain functor.

C*(—) : HoS — HoAlgg"
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Integral homotopy theory

Theorem (Mandell, 2006)
Let X — C*(X) the singular cochain functor.

C*(—) : HoS — HoAlgg"

This functor is a left adjoint. The right adjoint is denoted
A — (A). When restricted to simplicial sets X that are nilpotent
and of finite type, this functor is faithful.

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Integral homotopy theory

Theorem (Mandell, 2006)
Let X — C*(X) the singular cochain functor.

C*(—) : HoS — HoAlgg"

This functor is a left adjoint. The right adjoint is denoted

A — (A). When restricted to simplicial sets X that are nilpotent
and of finite type, this functor is faithful. Two simplicial sets that
are nilpotent and of finite type X and Y are weakly equivalent if
and only if C*(X) and C*(Y') are weakly equivalent as
E.-differential graded algebras.
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Integral homotopy theory
Theorem (Mandell, 2006)

Let X — C*(X) the singular cochain functor.
C*(—) : HoS — HoAlgg"

This functor is a left adjoint. The right adjoint is denoted

A — (A). When restricted to simplicial sets X that are nilpotent
and of finite type, this functor is faithful. Two simplicial sets that
are nilpotent and of finite type X and Y are weakly equivalent if
and only if C*(X) and C*(Y') are weakly equivalent as
E.-differential graded algebras.

Theorem (Toén, 2020)

Same theorem for X — ZX.

27 : HoS — Ho(cRing)°
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Integral homotopy theory

We have [S?, 5% = Z.
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Integral homotopy theory

We have [S2, 5% = Z. But,

[C*(8?), ¢ (8] = 2%, 25| = 26 [| Zo
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Integral homotopy theory

We have [S2, 5% = Z. But,

[C*(8?), ¢ (8] = 2%, 25| = 26 [| Zo

Fullness fails very badly !
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Binomial ring

Definition

A binomial ring is a torsion-free commutative ring R, such that, for

allac€ R and n € N,
n—1
nll []a— 1)
i=0
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Binomial ring

Definition

A binomial ring is a torsion-free commutative ring R, such that, for

allac€ R and n € N,
n—1
nll []a— 1)
i=0

(?)- JECED)

We write
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Binomial ring

Definition

A binomial ring is a torsion-free commutative ring R, such that, for

allac€ R and n € N,
n—1
nll []a— 1)
i=0

(?)- JECED)

We write

Definition

A binomial ring is a torsion free commutative ring R such that, for
all a € R, p prime,
pla® —a
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Binomial ring

@ Any subring of Q.
@ Any Q-algebra.
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Binomial ring

@ Any subring of Q.
@ Any Q-algebra.
© The ring of p-adic integers Zp.
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Binomial ring

@ Any subring of Q.
@ Any Q-algebra.
© The ring of p-adic integers Zp.

@ The ring of numerical function

Num[xy, ..., xp] = {f € Q[x1,...,xn], f(Z") C Z}

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Binomial ring

@ Any subring of Q.
@ Any Q-algebra.
© The ring of p-adic integers Zp.

@ The ring of numerical function

Num[xy, ..., xp] = {f € Q[x1,...,xn], f(Z") C Z}

@ Any product or tensor product of binomial rings.
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Binomial ring

@ Any subring of Q.
@ Any Q-algebra.
© The ring of p-adic integers Zp.

@ The ring of numerical function

Num[xy, ..., xp] = {f € Q[x1,...,xn], f(Z") C Z}

@ Any product or tensor product of binomial rings.

@ Any limit or colimit of binomial ring.
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@ Any subring of Q.
@ Any Q-algebra.
© The ring of p-adic integers Zp.

@ The ring of numerical function

Num[xy, ..., xp] = {f € Q[x1,...,xn], f(Z") C Z}

@ Any product or tensor product of binomial rings.

@ Any limit or colimit of binomial ring.

The ring Num|[x, . .., x| is the free binomial ring on n variables.

HompRging(Num[xi, ..., xs], R) = R"
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Cosimplicial binomial ring

Observation : The cosimplicial commutative ring ZX is a
cosimplicial binomial ring.
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Cosimplicial binomial ring

Observation : The cosimplicial commutative ring ZX is a
cosimplicial binomial ring.

Theorem (H.)

The functor X + ZX from HoS to Ho(cBRing)® is a left adjoint.
The right adjoint is denoted A — (A).
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Cosimplicial binomial ring

Observation : The cosimplicial commutative ring ZX is a
cosimplicial binomial ring.

Theorem (H.)

The functor X + ZX from HoS to Ho(cBRing)® is a left adjoint.
The right adjoint is denoted A — (A).

o The unit of this adjunction X — (ZX) is a weak equivalence
for X nilpotent of finite type.
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Cosimplicial binomial ring

Observation : The cosimplicial commutative ring ZX is a
cosimplicial binomial ring.
Theorem (H.)
The functor X + ZX from HoS to Ho(cBRing)® is a left adjoint.
The right adjoint is denoted A — (A).
o The unit of this adjunction X — (ZX) is a weak equivalence
for X nilpotent of finite type.
o The functor Z\7) is fully faithful when restricted to nilpotent
finite type spaces.
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Cosimplicial binomial ring
Observation : The cosimplicial commutative ring ZX is a
cosimplicial binomial ring.
Theorem (H.)

The functor X + ZX from HoS to Ho(cBRing)® is a left adjoint.
The right adjoint is denoted A — (A).

o The unit of this adjunction X — (ZX) is a weak equivalence
for X nilpotent of finite type.

o The functor Z\7) is fully faithful when restricted to nilpotent
finite type spaces.

The forgetful functor

Ho(cBRing) — Ho(cRing)

is not fully faithful.
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Remark about the hypothesis

The nilpotent hypothesis cannot be hoped to be removed.
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Remark about the hypothesis

The nilpotent hypothesis cannot be hoped to be removed.
Take X to be the Poincaré sphere minus a point.
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Remark about the hypothesis

The nilpotent hypothesis cannot be hoped to be removed.
Take X to be the Poincaré sphere minus a point.
Then the map X — pt is an integral homology isomorphism but X
is not contractible.
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Remark about the hypothesis

The nilpotent hypothesis cannot be hoped to be removed.

Take X to be the Poincaré sphere minus a point.

Then the map X — pt is an integral homology isomorphism but X
is not contractible.

The finite type hypothesis comes from the fact that we work with
cochains instead of chains.
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Remark about the hypothesis

The nilpotent hypothesis cannot be hoped to be removed.

Take X to be the Poincaré sphere minus a point.

Then the map X — pt is an integral homology isomorphism but X
is not contractible.

The finite type hypothesis comes from the fact that we work with
cochains instead of chains.

If we could define a chain functor with values in simplicial “binomial
corings”, there would be hope of being able to remove this
hypothesis.
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Sketch of proof

Any nilpotent space X is the limit of a tower
X—=>..Xp—>Xp21—...— Xo

where the map X, — X,_1 is a principal fibration with fiber
K(An, in) with A, a finitely generated abelian group and with
in > 1 and the sequence i, grows to +oo.
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Sketch of proof

Any nilpotent space X is the limit of a tower
X—=>..Xp—>Xp21—...— Xo

where the map X, — X,_1 is a principal fibration with fiber

K(An, in) with A, a finitely generated abelian group and with

in > 1 and the sequence i, grows to +oo.
We can reduce to proving that

7K@ ~ SymP" (DK 17Z[n))
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Sketch of proof

Any nilpotent space X is the limit of a tower
X—=>..Xp—>Xp21—...— Xo

where the map X, — X,_1 is a principal fibration with fiber
K(An, in) with A, a finitely generated abelian group and with
in > 1 and the sequence i, grows to +oo.

We can reduce to proving that

ZKEN) ~ Symbin( DK ~17Z[n))
We can further reduce to proving that

ZKED ~ Sym®n(DK1Z[1))
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Sketch of proof

Indeed the right adjoint of X — ZX is

A <A> = ma'pcBRing(Aa Z)
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Sketch of proof

Indeed the right adjoint of X — ZX is

A <A> = ma'pcBRing(Aa Z)

So we have
(Symbin(DK_lZ[n])> ~ RmapcBng(A,Z) ~

Rmap, a1, (DK ~1Z[n], Z) ~ RmapCh*(Z)(DK_lZ[n], 7) ~ K(Z,n)
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Sketch of proof

We start from the simplicial abelian group B,Z

[n] — Z"
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Sketch of proof

We start from the simplicial abelian group B,Z
[n] — Z"

with face maps d; : Z" — Z"! given by

do(a1,...,an) = (a2,...,an)
dn(a1,...,an) = (a2,...,an-1)
di(ai,...,an) =(a1,--.,ai + aj+1,---,an)
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Sketch of proof

We start from the simplicial abelian group B,Z
[n] — Z"

with face maps d; : Z" — Z"! given by

do(a1,...,an) = (a2,...,an)
dn(a1,...,an) = (a2,...,an-1)
di(ai,...,an) =(a1,--.,ai + aj+1,---,an)

We dualize to get Z[1]
Z[1]" = Z" = Hom(Z",Z)

with inner face maps given by the diagonals Z — Z @ Z and outer
face maps given by the zero map 0 — Z.
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Sketch of proof

Then

Sym®"(DK~'Z[1])" = Num([x]®" = Num([xy, .. ., X,]
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Sketch of proof

Then
Sym®"(DK~'Z[1])" = Num([x]®" = Num([xy, .. ., X,]

The outer coface maps are given by the unit Z — Num[x]. The
inner coface maps are induced by the diagonal map
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Sketch of proof

Then
Sym®"(DK~'Z[1])" = Num([x]®" = Num([xy, .. ., X,]

The outer coface maps are given by the unit Z — Num[x]. The
inner coface maps are induced by the diagonal map

A : Num[x] — Num[x, y]

given by A(f)(x,y) = f(x+ y).
This can be identified with the cobar construction of Num[x].

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Sketch of proof

Vandermonde's identity :

()=-2,00)

p+q=n
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Sketch of proof

Vandermonde's identity :

()=-2,00)

p+q=n

This mean that Num([x]" is isomorphic to Z[x].
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Sketch of proof

< prTq=n

This mean that Num[x]" is isomorphic to Z[x]. The cobar
construction of Num[x] is the dual of the bar construction of Z|[x].
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Sketch of proof

< prTq=n

This mean that Num[x]" is isomorphic to Z[x]. The cobar
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We can compute

H.(B(Z[x])) = TorE[X] (Z,7)

This homology is free of rank 1 in homological degree 0 and 1 and
is zero otherwise.
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Sketch of proof

< prTq=n

This mean that Num[x]" is isomorphic to Z[x]. The cobar
construction of Num[x] is the dual of the bar construction of Z|[x].
We can compute

H.(B(Z[x])) = TorE[X] (Z,7)

This homology is free of rank 1 in homological degree 0 and 1 and
is zero otherwise.

So the cobar construction of Num[x] has the same cohomology as
AR
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