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Algebraic invariants of homotopy types

Question

How to distinguish the homotopy type of S2 and S3 ?

Answer : One can use homology. The homology of Sn and Sm with
m 6= n cannot be isomorphic.

Question

How to distinguish the homotopy type of S2 ∨ S4 and CP2 ?

Answer : One can use cohomology with its cup product structure.
We have H∗(CP2) ∼= Z[x ]/x3 with |x | = 2 and
H∗(S2 ∨ S4) ∼= Z[x ]/x2 × Z[y ]/y2 with |x | = 2, |y | = 4.
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Algebraic invariants of homotopy types

Question

How to distinguish the homotopy type of S3 ∨ S5 and ΣCP2 ?

The cohomology of both spaces are abstrctly isomorphic

H∗(ΣCP2) = Z1⊕ ZΣx ⊕ ZΣx2

H∗(S3 ∨ S5) = Z1⊕ ZΣx ⊕ ZΣy

Answer : One can use Steenrod operations. In H∗(CP2;F2), there
is a non-trivial Steenrod operation

Sq2(x) = x2

This remains true on H∗(ΣCP2;F2) :

Sq2(Σx) = Σx2

On the other hand, all Steenrod operations are trivial in the
cohomology of S3 ∨ S5.
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Algebraic invariants of homotopy types

Let
Lm,n = S3/µm

where µm acts via ζ.(z1, z2) = (ζz1, ζ
nz2).

The two manifolds L7,1
and L7,2 are homotopy equivalento but not diffeomorphic.

Question
How to distinguish the homotopy type of F2(L7,1) and F2(L7,2) ?

Answer : [Salvatore Longoni, 2004]. The universal cover F̃2(L7,1)
and F̃2(L7,2) are not homotopy equivalent because there is a
non-trivial triple Massey product in H5(F̃2(L7,2);Q) whereas all
Massey products are trivial in H∗(F̃2(L7,1);Q).
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Massey products

The Massey products and Steenrod operations come form the fact
that there is highly structured multiplication at the chain level.
Namely C ∗(X ;R) is a dg-algebra and an E∞-algebra.

Construction
Given three cohomology classes [x ], [y ] and [z ] in a dg-algebra A
such that [x ][y ] = 0 and [y ][z ] = 0, we may form their triple
Massey product

〈[x ], [y ], [z ]〉 = {xb + az , db = yz and da = xy}
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Steenrod squares

The cochain complex C ∗ := C ∗(X ;F2) has a multiplication which
is not strictly commutative. However, it has an E∞-structure.

There is a C2-equivariant multiplication map

µ : W ⊗ C ∗ ⊗ C ∗ → C ∗

where W
'−→ F2 is a F2[C2] projective resolution.

W ⊗ C ∗
∆−→W ⊗ C ∗ ⊗ C ∗ → C ∗

This induces a map

W C2 ⊗ C ∗ = (W ⊗ C ∗)C2 → C ∗

taking homology, we get

Sq : H∗(C2;F2)⊗ H∗(X ;F2)→ H∗(X ;F2)
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Steenrod squares

We have H∗(C2;F2) ∼= F2[u] with |u| = 1.

Definition

If x ∈ Hk(X ;F2), we write Sqn(x) = Sq(un ⊗ x) ∈ Hk+n(X ;F2)

In general, there are Σn-equivariant maps

W ⊗ (C ∗)⊗n → C ∗

satisfying compatibilities
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Highly structured cochains

Let X be a topological space. We turn it into a simplicial set

[n] 7→ {f : ∆n → X}.

We still denote this simplicial set X .

We map to any commutative
coefficient ring R and obtain a cosimplicial R-algebra RX . We can
go one step further and apply the Dold-Kan construction

C ∗(X ;R) = N(RX ) = (RX/im(s i ),
∑

(−1)id i )

Problem : This is no longer commutative. But still associative.
However, this is E∞ [Berger-Fresse]
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Rational homotopy theory

Piecewise linear differential forms.

Ω∗poly (∆n) := Q[x0, . . . , xn, dx0, . . . , xn]/(
n∑

i=0

xi = 1,
n∑

i=0

dxi = 0)

with |xi | = 0, |dxi | = 1.

The differential is uniquely determined by
d(xi ) = dxi . The functor Ω∗poly can be formally extended to
simplicial complexes or even simplicial sets.

Theorem
The functor Ω∗poly is quasi-isomorphic to C ∗(−;Q). In particular
the cohomology of Ω∗poly (X ) is naturally the cohomology of X with
its cup-product structure.
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Rational homotopy theory

Theorem
The functor Ω∗poly is a left adjoint functor

HoS→ HoCDGAop

The right adjoint is denoted A 7→ 〈A〉.

The unit of this adjunction

X → 〈Ω∗poly (X )〉

is rationalisation when X is of finite type.

Definition
1 finite type : homology is degreewise finitely generated.
2 Nilpotent : connected, fundamental group is nilpotent and

acts nilpotently on higher homotopy groups.

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Rational homotopy theory

Theorem
The functor Ω∗poly is a left adjoint functor

HoS→ HoCDGAop

The right adjoint is denoted A 7→ 〈A〉. The unit of this adjunction

X → 〈Ω∗poly (X )〉

is rationalisation when X is of finite type.

Definition
1 finite type : homology is degreewise finitely generated.
2 Nilpotent : connected, fundamental group is nilpotent and

acts nilpotently on higher homotopy groups.

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Rational homotopy theory

Theorem
The functor Ω∗poly is a left adjoint functor

HoS→ HoCDGAop

The right adjoint is denoted A 7→ 〈A〉. The unit of this adjunction

X → 〈Ω∗poly (X )〉

is rationalisation when X is of finite type.

Definition
1 finite type : homology is degreewise finitely generated.
2 Nilpotent : connected, fundamental group is nilpotent and

acts nilpotently on higher homotopy groups.

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Rational homotopy theory

Definition
For a nilpotent space X , the rationalisation is the initial (up to
homotopy) space XQ which is connected, whose homotopy groups
are uniquely divisible and with a map X → XQ.

At the level of homotopy groups the map

X → XQ

is
π∗(X )→ π∗(X )⊗Q

More generally, if X is not nilpotent (but still finite type). We have

π1(XQ) ∼= π1(X )∧Q

(Malcev completion)
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Examples

Example

Write Fn(R2), the space of ordered configuration of n points in R2.

Then Fn(R2) = K (PBn, 1). And Fn(R2)Q = K ((PBn)∧Q, 1). We
have

(PBn)∧Q = exp(pbn)

where pbn is the Drinfeld-Konho Lie algebra.

Example

Take X = K (GL∞(Z), 1). Then XQ has higher homotopy groups.
They are the rational higher K -groups of Z (non trivial, computed
by Borel).

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Examples

Example

Write Fn(R2), the space of ordered configuration of n points in R2.
Then Fn(R2) = K (PBn, 1).

And Fn(R2)Q = K ((PBn)∧Q, 1). We
have

(PBn)∧Q = exp(pbn)

where pbn is the Drinfeld-Konho Lie algebra.

Example

Take X = K (GL∞(Z), 1). Then XQ has higher homotopy groups.
They are the rational higher K -groups of Z (non trivial, computed
by Borel).

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Examples

Example

Write Fn(R2), the space of ordered configuration of n points in R2.
Then Fn(R2) = K (PBn, 1). And Fn(R2)Q = K ((PBn)∧Q, 1).

We
have

(PBn)∧Q = exp(pbn)

where pbn is the Drinfeld-Konho Lie algebra.

Example

Take X = K (GL∞(Z), 1). Then XQ has higher homotopy groups.
They are the rational higher K -groups of Z (non trivial, computed
by Borel).

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Examples

Example

Write Fn(R2), the space of ordered configuration of n points in R2.
Then Fn(R2) = K (PBn, 1). And Fn(R2)Q = K ((PBn)∧Q, 1). We
have

(PBn)∧Q = exp(pbn)

where pbn is the Drinfeld-Konho Lie algebra.

Example

Take X = K (GL∞(Z), 1). Then XQ has higher homotopy groups.
They are the rational higher K -groups of Z (non trivial, computed
by Borel).

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Examples

Example

Write Fn(R2), the space of ordered configuration of n points in R2.
Then Fn(R2) = K (PBn, 1). And Fn(R2)Q = K ((PBn)∧Q, 1). We
have

(PBn)∧Q = exp(pbn)

where pbn is the Drinfeld-Konho Lie algebra.

Example

Take X = K (GL∞(Z), 1). Then XQ has higher homotopy groups.
They are the rational higher K -groups of Z (non trivial, computed
by Borel).

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Examples

Example

Write Fn(R2), the space of ordered configuration of n points in R2.
Then Fn(R2) = K (PBn, 1). And Fn(R2)Q = K ((PBn)∧Q, 1). We
have

(PBn)∧Q = exp(pbn)

where pbn is the Drinfeld-Konho Lie algebra.

Example

Take X = K (GL∞(Z), 1). Then XQ has higher homotopy groups.
They are the rational higher K -groups of Z (non trivial, computed
by Borel).

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Integral homotopy theory

Theorem (Mandell, 2006)

Let X 7→ C ∗(X ) the singular cochain functor.

C ∗(−) : HoS→ HoAlgopE∞

This functor is a left adjoint. The right adjoint is denoted
A 7→ 〈A〉. When restricted to simplicial sets X that are nilpotent
and of finite type, this functor is faithful. Two simplicial sets that
are nilpotent and of finite type X and Y are weakly equivalent if
and only if C ∗(X ) and C ∗(Y ) are weakly equivalent as
E∞-differential graded algebras.

Theorem (Toën, 2020)

Same theorem for X 7→ ZX .

Z(−) : HoS→ Ho(cRing)op

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Integral homotopy theory

Theorem (Mandell, 2006)

Let X 7→ C ∗(X ) the singular cochain functor.

C ∗(−) : HoS→ HoAlgopE∞

This functor is a left adjoint. The right adjoint is denoted
A 7→ 〈A〉. When restricted to simplicial sets X that are nilpotent
and of finite type, this functor is faithful.

Two simplicial sets that
are nilpotent and of finite type X and Y are weakly equivalent if
and only if C ∗(X ) and C ∗(Y ) are weakly equivalent as
E∞-differential graded algebras.

Theorem (Toën, 2020)

Same theorem for X 7→ ZX .

Z(−) : HoS→ Ho(cRing)op

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Integral homotopy theory

Theorem (Mandell, 2006)

Let X 7→ C ∗(X ) the singular cochain functor.

C ∗(−) : HoS→ HoAlgopE∞

This functor is a left adjoint. The right adjoint is denoted
A 7→ 〈A〉. When restricted to simplicial sets X that are nilpotent
and of finite type, this functor is faithful. Two simplicial sets that
are nilpotent and of finite type X and Y are weakly equivalent if
and only if C ∗(X ) and C ∗(Y ) are weakly equivalent as
E∞-differential graded algebras.

Theorem (Toën, 2020)

Same theorem for X 7→ ZX .

Z(−) : HoS→ Ho(cRing)op

Geoffroy Horel (USPN) Binomial rings and homotopy theory



Integral homotopy theory

Theorem (Mandell, 2006)

Let X 7→ C ∗(X ) the singular cochain functor.

C ∗(−) : HoS→ HoAlgopE∞

This functor is a left adjoint. The right adjoint is denoted
A 7→ 〈A〉. When restricted to simplicial sets X that are nilpotent
and of finite type, this functor is faithful. Two simplicial sets that
are nilpotent and of finite type X and Y are weakly equivalent if
and only if C ∗(X ) and C ∗(Y ) are weakly equivalent as
E∞-differential graded algebras.

Theorem (Toën, 2020)

Same theorem for X 7→ ZX .

Z(−) : HoS→ Ho(cRing)op
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Integral homotopy theory

We have [S2,S2] ∼= Z.

But,

[C ∗(S2),C ∗(S2)] ∼= [ZS2
,ZS2

] ∼= Z⊕
∏
p

Zp

Fullness fails very badly !
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Binomial ring

Definition
A binomial ring is a torsion-free commutative ring R , such that, for
all a ∈ R and n ∈ N,

n!|
n−1∏
i=0

(a− i)

We write (
a

n

)
=

∏n−1
i=0 (a− i)

n!
.

Definition
A binomial ring is a torsion free commutative ring R such that, for
all a ∈ R , p prime,

p|ap − a
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Binomial ring

Example
1 Any subring of Q.

2 Any Q-algebra.
3 The ring of p-adic integers Zp.
4 The ring of numerical function

Num[x1, . . . , xn] = {f ∈ Q[x1, . . . , xn], f (Zn) ⊂ Z}

5 Any product or tensor product of binomial rings.
6 Any limit or colimit of binomial ring.

Proposition

The ring Num[x1, . . . , xn] is the free binomial ring on n variables.

HomBRing(Num[x1, . . . , xn],R) = Rn
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Cosimplicial binomial ring

Observation : The cosimplicial commutative ring ZX is a
cosimplicial binomial ring.

Theorem (H.)

The functor X 7→ ZX from HoS to Ho(cBRing)op is a left adjoint.
The right adjoint is denoted A 7→ 〈A〉.

The unit of this adjunction X → 〈ZX 〉 is a weak equivalence
for X nilpotent of finite type.
The functor Z(−) is fully faithful when restricted to nilpotent
finite type spaces.

Remark
The forgetful functor

Ho(cBRing)→ Ho(cRing)

is not fully faithful.
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Remark about the hypothesis

Remark
The nilpotent hypothesis cannot be hoped to be removed.

Take X to be the Poincaré sphere minus a point.
Then the map X → pt is an integral homology isomorphism but X
is not contractible.

Remark
The finite type hypothesis comes from the fact that we work with
cochains instead of chains.
If we could define a chain functor with values in simplicial “binomial
corings”, there would be hope of being able to remove this
hypothesis.
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Sketch of proof

Any nilpotent space X is the limit of a tower

X → . . .Xn → Xn−1 → . . .→ X0

where the map Xn → Xn−1 is a principal fibration with fiber
K (An, in) with An a finitely generated abelian group and with
in ≥ 1 and the sequence in grows to +∞.

We can reduce to proving that

ZK(Z,n) ' Symbin(DK−1Z[n])

We can further reduce to proving that

ZK(Z,1) ' Symbin(DK−1Z[1])
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Sketch of proof

Indeed the right adjoint of X 7→ ZX is

A 7→ 〈A〉 = mapcBRing(A,Z)

So we have

〈Symbin(DK−1Z[n])〉 ' RmapcBRing(A,Z) '

RmapcAb(DK−1Z[n],Z) ' RmapCh∗(Z)(DK−1Z[n],Z) ' K (Z, n)
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Sketch of proof

We start from the simplicial abelian group B•Z

[n] 7→ Zn

with face maps di : Zn → Zn−1 given by

d0(a1, . . . , an) = (a2, . . . , an)

dn(a1, . . . , an) = (a2, . . . , an−1)

di (a1, . . . , an) = (a1, . . . , ai + ai+1, . . . , an)

We dualize to get Z[1]

Z[1]n = Zn = Hom(Zn,Z)

with inner face maps given by the diagonals Z→ Z⊕ Z and outer
face maps given by the zero map 0→ Z.
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Sketch of proof

Then

Symbin(DK−1Z[1])n = Num[x ]⊗n = Num[x1, . . . , xn]

The outer coface maps are given by the unit Z→ Num[x ]. The
inner coface maps are induced by the diagonal map

∆ : Num[x ]→ Num[x , y ]

given by ∆(f )(x , y) = f (x + y).
This can be identified with the cobar construction of Num[x ].
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Sketch of proof

Vandermonde’s identity :(
x + y

n

)
=
∑

p+q=n

(
x

p

)(
y

q

)

This mean that Num[x ]∨ is isomorphic to Z[x ]. The cobar
construction of Num[x ] is the dual of the bar construction of Z[x ].
We can compute

H∗(B(Z[x ])) ∼= Tor∗Z[x](Z,Z)

This homology is free of rank 1 in homological degree 0 and 1 and
is zero otherwise.
So the cobar construction of Num[x ] has the same cohomology as
ZS1

.
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