

Exercise sheet 1

Due before the lecture on Monday, 22 October 2018.

Exercise 1. (5 points) Let X be a pointed space. Show that ΣX is a co- H -group and that $\Sigma(\Sigma X)$ is a homotopy commutative co- H -group. Dualise your argument to show that ΩX is an H -group and that $\Omega(\Omega X)$ is a homotopy commutative H -group.

Exercise 2. (5 points) Weak equivalence is not a symmetric relation:

- (a) Give an example of a weak equivalence $X \rightarrow Y$ for which there does not exist a weak equivalence $Y \rightarrow X$.

However, there is an equivalence relation \simeq_w generated by weak equivalence: $X \simeq_w Y$ if there are spaces $X = X_1, X_2, \dots, X_n = Y$ with weak equivalences $X_i \rightarrow X_{i+1}$ or $X_i \leftarrow X_{i+1}$ for each i .

- (b) Show that $X \simeq_w Y$ if and only if X and Y have a common CW approximation.

Exercise 3. (4 points) For $n \geq 0$, show that an n -connected, n -dimensional CW complex is contractible.

Exercise 4. (6 points)

- (a) Show that the suspension of an acyclic CW complex (i.e. a CW complex whose reduced homology vanishes) is contractible.
- (b) Show that a map between simply-connected CW complexes is a homotopy equivalence if its mapping cone is contractible.
- (c) Provide an explicit counter-example to show that the connectivity assumption in (b) cannot be dropped.