

Exercise sheet 11

Due before the lecture on Monday, 21 January 2019.

Exercise 1. (4 points) Prove the *5-lemma modulo \mathcal{C}* for any Serre class \mathcal{C} in the category of abelian groups. Namely, in the usual commutative diagram for the 5-lemma, the middle vertical arrow is both a \mathcal{C} -monomorphism and a \mathcal{C} -epimorphism if the four vertical arrows surrounding it are.

Exercise 2. (5 points) Let $R \subseteq \mathbb{Q}$ be a subring and let X be a simply-connected space such that $H_*(X; R) \cong H_*(S^n; R)$. Then there exists a map $S^n \rightarrow X$ that induces an isomorphism on $H_*(-; R)$.

Exercise 3. (6 points) All spaces in this exercise are assumed to be CW-complexes. A *rational homology equivalence* is a map that induces isomorphisms on $H_*(-; \mathbb{Q})$. A CW-complex Z is called *rational* if for any rational homology equivalence $f: X \rightarrow Y$, the induced map

$$f^*: [Y, Z] \longrightarrow [X, Z]$$

of (unbased) homotopy classes of (unbased) maps is a bijection. We call a map $\lambda: Z \rightarrow Z'$ a *rationalisation* of Z if Z' is rational and λ is a rational homology equivalence.

(a) Show that if a rationalisation $\lambda: Z \rightarrow Z'$ exists, it satisfies the following two universal properties:

(i) It is “homotopy initial” among maps from Z to rational CW-complexes, i.e. for all rational CW-complexes W and all maps $f: Z \rightarrow W$, there is a map $f': Z' \rightarrow W$, unique up to homotopy, such that the following diagram commutes up to homotopy:

$$\begin{array}{ccc} Z & \xrightarrow{f} & W \\ \lambda \downarrow & \swarrow f' & \\ Z' & & \end{array}$$

(ii) It is “homotopy terminal” among rational homology equivalences whose domain is Z , i.e. for all rational homology equivalences of the form $g: Z \rightarrow W$, there is a map $g': W \rightarrow Z'$, unique up to homotopy, such that the following diagram commutes up to homotopy:

$$\begin{array}{ccc} Z & \xrightarrow{\lambda} & Z' \\ g \downarrow & \swarrow g' & \\ W & & \end{array}$$

- (b) Conclude that rationalisations of CW-complexes are unique up to homotopy equivalence, provided they exist.
- (c) Show that a rational homology equivalence between rational CW-complexes is a homotopy equivalence.
- (d) Find a rationalisation of $\mathbb{R}P^\infty$.

Exercise 4. (5 points)

- (a) For which $n > 0$ is the quotient map $S^n \rightarrow \mathbb{R}P^n$ a rational homology equivalence?
- (b) Construct a rational homology equivalence $\mathbb{H}P^\infty \rightarrow K(\mathbb{Z}, 4)$.