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Lecture 17: 3 December 2018

5 Quasifibrations and the Dold-Thom theorem

Goal: Understand “difference” between π∗ and H∗.
References:

• Dold, Thom: “Quasifaserungen und unendliche symmetrische Produkte”, Ann. Math. 67.2
(1958)

• Appendix 4K of Hatcher: Algebraic Topology, Cambridge University Press (2010)

5.1 Symmetric products

Definition 5.1. The n-fold symmetric product of a space X ∈ CG is

SPn(X) = (Xn)/Σn = {unordered tuples [x1, . . . , xn]}.

For (X, e) ∈ CG∗ based, we have maps in : SPn(X) → Spn+1(X) that insert a basepoint e. The
infinite symmetric product is the CG-space

SP (X) = {unordered tuples [x1, . . . , xn] |n > 1}.

equipped with the colimit topology of the SPn(X).

Lemma 5.2. These constructions define endofunctors of CG respectively CG∗.

Proposition 5.3. If (X, e) is WH, then so are SPn(X) and SP (X).

The proof uses two lemmas:

Lemma 5.4. The quotient map Xn → SPn(X) is a closed map.

Lemma 5.5. Each in : SPn(X)→ SPn+1(X) is a closed inclusion.

Example 5.6. For X = S2 ∼= C ∪∞, we have SPn(S2) ' CPn and SP (S2) ' CP∞.

Example 5.7. We’ll see in the exercises that S1 = SP 1(S1)→ SP (S1) is an equivalence.

5.2 Commutative topological monoids

Definition 5.8. By a commutative topological monoid we mean a strictly associative, strictly
commutative and strictly unital monoid CGWH space, with basepoint the unit element. Let
CMon be the category with objects the commutative topological monoids and morphisms those
maps that preserve the multiplication and the unit.

Example 5.9. SP (X) is a commutative topological monoid with multiplication given by “concate-
nation” of unordered tuples and with unit the basepoint.

Lemma 5.10. X 7→ SP (X) is left adjoint to the forgetful functor CMon → CGWH∗. In other
words, SP (−) satisfies the universal property of the free commutative topological monoid: for all
M ∈ CMon, any map of spaces f : X →M extends uniquely to a map of monoids f̂ : SP (X)→M .

Corollary 5.11. An explicit homotopy inverse for the inclusion S1 → SP (S1) (see Example 5.7)
is given by the universal map îd obtained from id : S1 → S1.

Definition 5.12. The weak product
∏̃

iXi of based CGWH spaces is the subspace of the product
consisting of those tuples (xi)i such that xi = e for all but finitely many i.
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Lemma 5.13. We have ∏̃
i∈I
Xi
∼= colim

J⊂I finite

∏
j∈J

Xj .

Lemma 5.14. The weak product with componentwise multiplication is the categorical coproduct in
CMon.

Corollary 5.15.

SP
(∨

i

Xi

) ∼= w∏
i

SP (Xi)

Corollary 5.16. For any countable set I:

π∗
(
SP
(∨

i

Xi

)) ∼= ⊕
i

π∗(SP (Xi))

(Also in degree 1 because π1 of a symmetric product is always abelian.)

Remark 5.17. The statement of Corollary 5.16 is true for arbitrary indexing sets; but we never
proved that π∗ commutes with colimits along closed inclusions indexed by a well-behaved poset.
In the context of Brown representability and uniqueness theorems for homology of CW complexes,
the wedge axiom is only needed for countable wedge sums (since CW complexes are only defined
in a countable range of dimensions).

5.3 The Dold-Thom theorem
Convention: Write CW∗,c for the category of connected based CW complexes.

Theorem 5.18. (Dold-Thom theorem) Consider the functors

hn(X) := πn(SP (X)), n > 0.

For all A→ X, there are boundary homomorphisms

∂n : πn(SP (X/A))→ πn−1(SP (A)

that make h∗ a reduced cohomology theory on the category CW∗,c. Moreover, there is a natural
isomorphism h∗ ∼= H̃∗(−;Z).

Remark 5.19. We can extend h∗ to non-connected CW complexes Y ∈ CW∗ by setting ĥn(Y ) =

hn+1(ΣY ). It follows immediately that h∗ ∼= H∗(−;Z) on CW∗.

Proof. We first verify the homology axioms and then cnstruct the comparison map:
Exactness: We’ll show in §5.5 that every A→ X gives rise to a long exact sequence

. . .→ hn(A)→ hn(X)→ hn(X/A)
∂n−→ hn−1(A)→ . . .

Suspension isomorphism: Follows from previous statement applied to X → CX → ΣX.
Wedge axiom: This is Corollary 5.16.
Homotopy-invariance: Starting with a homotopy H : f ' g, we construct for each stage of the
colimit a homotopy H̃n : SPn(f) ' SPn(g) . . .
Comparison map: We know from Example 5.7 and Corollary 5.11 that the inclusion S1 =

SP 1(S1)→ SP (S2) is a homotopy equivalence with inverse îd : SP (S1)→ S1. Together with the
Hurewicz isomorphism π1(S1)→ H̃1(S1;Z), this gives an isomorphism

φ : h1(S1)→ H̃1(S1).

Similar to the proofs of the uniqueness statements that we have seen previously, φ extends to a
natural transformation of homology theories that is an isomorphism for all spheres Sn, n > 1,
hence for all connected CW complexes.
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Remark 5.20. The composite

φ ◦ πn(incl) : πn(X)→ πn(SP (X))→ H̃n(X)

is the Hurewicz homomorphism, up to isomorphism. The Hurewicz homomorphism is natural and
compatible with suspension isomorphisms, so it suffices to check the statement for X = S1, where
it holds by construction of φ.

5.4 Applications

Definition 5.21. X is called a Moore space of type M(G,n) if H̃n(X;Z) = G and H̃i(X;Z) = 0

for i 6= n. If n > 1, we require that M(G,n) be simply-connected.

Corollary 5.22. The functor SP sends Moore spaces of typeM(G,n) to Eilenberg-MacLane spaces
of type K(G,n).

Lecture 18: 10 December 2018

Corollary 5.23. If a connected X ∈ CW∗,c admits the structure of a commutative topological
monoid, then X is weakly equivalent to a product of Eilenberg-MacLane spaces.

The proof needs a lemma.

Lemma 5.24. Let X be a based space such that π1(X) is abelian. For all n > 1, there exists a
space of type M(πn(X), n), simply connected if n > 1, together with a map fn : M(πn(X), n)→ X

that induces an isomorphism on πn.

5.5 Quasifibrations

Left to show: exactness of h∗ = π∗(SP (−)), which follows from:

Theorem 5.25. If f : A → Z is a map of connected CW complexes with mapping cylinder Mf ,
then the map SP (Mf )→ SP (Mf/A) induced by Mf →Mf/A is a quasifibration with fibre SP (A),
hence

SP (A)→ SP (Mf )→ SP (Mf/A)

gives rise to a long exact sequence of homotopy groups.

Example 5.26. Let f : A → X be a map of based connected CW complexes. Pick a path γ in
Mf such that γ(t) ∈ X − A for t > 0 and γ(0) = a is not the basepoint. Then p(γ) is a path
in SP (Mf/A). Any lift γ̃ to SP (Mf ) would have to satisfy γ̃(0) ∈ a · SP (A), so there is no lift
starting at e ∈ SP (Mf ).

Recall the notion of a quasifibration from Definition 2.60.

Lemma 5.27. For Y path-connected, a map p : X → Y is a quasifibration if and only if

p∗ : π∗(X, p
−1(y), x)→ π∗(Y, y)

is an isomorphism for all y ∈ Y, x ∈ p−1(y), i > 0.

Lemma 5.28 (Long exact sequence of homotopy groups of a triple). Let (X,A,B, x) be a triple
(i.e. x ∈ B ⊆ A ⊆ X). Then there is a long exact sequence (of abelian groups for n > 3, groups
for n > 2, pointed sets otherwise) of the form

. . .→ πn(A,B, x)→ πn(X,B, x)→ πn(X,A, x)→ πn−1(A,B, x)→ . . .
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Proof. Similar to the proof for a pair.

Proposition 5.29. Let f : (X;U1, U2)→ (Y ;V1, V2) be a map of triads such that

f∗ : π∗(Ui, U1 ∩ U2)→ π∗(Vi, V1 ∩ V2)

are isomorphisms for i = 1, 2 and all choices of basepoints, then so are f∗ : π∗(X,Ui)→ π∗(Y, Vi).

Proof. Omitted. This is a relative version of Theorem 3.15. The proof is very technical and can
be found e.g. as Proposition 4K.1 in Hatcher’s book.

Lemma 5.30. Let Y be path-connected. The map p : X → Y is a quasifibration if one of the
following is satisfied:

(i) All fibres of p are path-connected and there is a triad (Y ;V1, V2) such that each p−1(Vi)→ Vi
and p−1(V1 ∩ V2)→ V1 ∩ V2 are quasifibrations.

(ii) Y is the colimit of path-connected spaces Yi along closed inclusions Yi → Yi+1, such that each
p−1(Yi)→ Yi is a quasifibration.

(iii) There are subspaces Ũ ⊆ X, U ⊆ Y and a commutative diagram of deformations

I ×X h̃ //

I×p
��

X

p
��

I × Y
h
// Y

with
h̃0 = idX , h̃t(Ũ) ⊆ Ũ , h̃1(X) ⊆ Ũ ,

h0 = idY , ht(U) ⊆ U, h1(Y ) ⊆ U,

such that p : Ũ → U is a quasifibration and, for all y ∈ Y ,

h̃1 : p−1(y)→ p−1(h1(y))

is a weak equivalence.

Proof of Theorem 5.25. We have to show: X = SP (Mf ) → Y = SP (Mf/A) is a quasifibration.
Set Y0 = ∗, Yn = SPn(Mf/A) and Xn = p−1(Yn). Thus Xn is the space of unordered finite tuples
of elements of Mf with at most n entries contained in Mf −A.
Step 1: By part (ii) of Lemma 5.30, it is enough to show that each Xn → Yn is a quasifibration.
We will prove this by induction on n, the case n = 0 being trivial.
Step 2: We write Yn = U ∩ (Yn−Yn−1), where U is an open neighbourhood of Yn−1 in Yn that will
be constructed later. By part (i) of Lemma 5.30, it suffices to show that all fibres of p : Xn → Yn
are path-connected and that p is a quasifibration over Yn−Yn−1, over U , and over the intersection.
Step 3: We show that all fibres are connected: Let y ∈ Yn. If y = [e], then p−1(y) = SP (A). If
y 6= e, then it can be written in a unique way as a product of elements of Mf/A. Let ỹ be the
unique lift to SP (Mf −A) of the product of those factors of y that are not the basepoint of Mf/A.
Then p−1(y) is the coset SP (A) · ỹ, hence connected.
Step 4: We show that p is a trivial fibre bundle over Yn−Yn−1. It follows that it is a quasifibration
over any subspace of Yn−Yn−1, in particular over (Yn−Yn−1)∩U . (. . . details given in lecture. . . )1

Step 5: We construct U geometrically and show that p is a quasifibration over U . (. . . details given
in lecture. . . )

1 Addendum to the proof of the lecture: At some point in the proof, we used without justification that SP (Mf )·V
is closed in SP (Mf ) if V is a closed subset of SP (A). This is indeed true and can be seen as follows: Since A ⊆Mf is
closed, V ⊆ SP (Mf ) is closed. It now suffices to check that the multiplication map SP (Mf )×SP (Mf )→ SP (Mf )
is a closed map. This can be verified by restricting to SP i(Mf )× SP j(Mf ), where it can be proven by mimicking
the proof of Lemma 5.5.
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